Abstract:
An article includes a first portion including a silicone polymer; a second portion adjacent to the first portion, wherein the second portion includes a thermoplastic polymer including a functional moiety that forms a chemical bond with the silicone polymer. A method of forming an article includes providing a first portion including a silicone polymer; providing a second portion adjacent to the first portion, wherein the second portion includes a thermoplastic polymer including a functional moiety that forms a chemical bond with the silicone polymer; and curing the first portion at a temperature lower than the heat deformation temperature of the thermoplastic polymer to form the chemical bond between the functional moiety of the second portion and the silicone polymer of the first portion.
Abstract:
A method is provided for coating or filling a porous material. According to one embodiment, the method includes providing the porous material, delivering precursor molecules by gas phase exposure into pores of the porous material, and reacting the precursor molecules to form a polymer inside the pores.
Abstract:
A wet coating method is described, which includes the following steps. A film coating is applied to at least one surface of a substrate using a wet process. A plasma-assisted filling treatment is performed on the film coating to crystallize the film coating into a film. The plasma-assisted filling treatment includes using a filling coating.
Abstract:
The disclosed technology relates to methods, apparatuses and systems for detecting molecules using surface plasmon resonance techniques, and more particularly to surface plasmon resonance techniques that employ metal nanoparticles formed on substrates. In one aspect, method of making a layer of metallic nanoparticles includes providing a liquid composition comprising a binder polymer and a solvent and at least partially immersing, into the liquid composition, an article comprising a polymeric surface, wherein the polymeric surface comprises a polymeric material and does not comprise an inorganic glass or crystalline material. The method additionally includes applying a gas phase plasma to the liquid composition to facilitate chemical reactions between the binder polymer and the polymeric material of the polymeric surface to form a binder layer on the polymeric surface of the article. The method further includes applying metallic nanoparticles onto the binder layer to form a metallic nanoparticle layer on the binder layer.
Abstract:
Method for coating a plastics substrate with a functional layer, wherein (a) in a vacuum chamber, an organic UV absorber which comprises at least one chromophore and at least one reactive side chain is evaporated and (b) is brought into contact with at least one surface of the plastics substrate and excited with a plasma, or (c) is excited with a plasma and then brought into contact with at least one surface of the plastics substrate, whereby a functional layer comprising the UV absorber is formed on the surface of the plastics substrate, the plasma being ignited at a pressure of greater than 10−5 bar and less than 1.013 bar.
Abstract:
A process for producing polymeric films by applying a liquid composition onto a surface of a substrate under vacuum conditions in a vacuum chamber. The composition has a first component which is polymerizable or crosslinkable in the presence of a sufficient amount of an acid; and a cationic photoinitiator which generates an acid upon exposure to ultraviolet radiation, electron beam radiation or both to cause polymerizing or crosslinking of the first component. A gas which emits ultraviolet radiation upon exposure to electron beam radiation is introduced into the vacuum chamber. The composition and the gas are exposed to electron beam radiation to cause the cationic photoinitiator to generate an amount of an acid to cause polymerizing or crosslinking of the first component. The composition is exposed to both electron beam radiation and gas-generated ultraviolet radiation and cured.
Abstract:
A composite sheet comprises a substrate and a multi-layer coating on its outer surface, the coating comprising a metal layer and an outer polymeric layer formed from a precursor comprising a polymerizable composition that includes an olefin group and a moisture curable group, such as an isocyanate or silane group. The function of the polymeric layer includes protecting the metal layer from corrosion. A production process for the composite sheet includes depositing the precursor and exposing it to both beam radiation and moisture, which respectively promote polymerization and curing at different sites of the precursor. The amenability of the isocyanate or silane functionality to moisture-promoted coupling promotes substantially full conversion and curing of the precursor, even of portions of the substrate that are geometrically shadowed from incident beam radiation.
Abstract:
Disclosed is an atmospheric-pressure double-plasma graft polymerization apparatus. The apparatus includes a workbench, an initial roller of a roll-to-roll device, an atmospheric-pressure plasma activation device, a peroxide formation device, a coating and grafting device, a drying device, a graft polymerization and curing device, a curing device and a final roller of a roll-to-roll device. The devices are sequentially provided on the workbench.
Abstract:
The invention relates to a pharmaceutical packaging comprising a silicone-free lubricating film of crosslinked organic molecules, and to a method for producing same.
Abstract:
A method of making a polymer coating on a microstructured substrate. The method may be performed by vaporizing a liquid monomer or other pre-polymer composition and condensing the vaporized material onto a microstructured substrate, followed by curing. The resulting article may possess a coating that preserves the underlying microstructural feature profile. Such a profile-preserving polymer coating can be used to change or enhance the surface properties of the microstructured substrate while maintaining the function of the structure.