Abstract:
A method of refurbishing a surface of a component for an electronic device, includes: contacting a surface to be refurbished with an etching composition to provide a treated surface; optionally firstly cleaning the treated surface by contacting with a glass cleaner to provide a firstly cleaned surface; optionally secondly cleaning the firstly cleaned surface by contacting the firstly cleaned surface with a grease remover to provide a secondly cleaned surface; optionally contacting the secondly cleaned surface with an activator to provide an activated surface; disposing a coating resin on the treated and optionally activated surface; and curing the coating resin to provide a coated surface to refurbish the surface of the electronic device, wherein the coating resin comprises a by droxyl functional dendritic polymer; optionally an acrylic polyol; and a plurality of metal oxide nanoparticles optionally encapsulated in a hydroxyl functional polymer or a hydroxyl functional fluorosurfactant.
Abstract:
A multi-row magnetic dial assembly that conveys work pieces, such as fasteners, includes a work piece engaging surface disposed around an outer perimeter, adjacent a first dial surface and/or adjacent a second dial surface. Multiple magnets are disposed adjacent the work piece engaging surface to exert a magnetic force on work pieces to magnetically hold them against a dial. The magnets include a first magnet and a second magnet that exert magnetic forces so that the work piece engaging surface magnetically attracts and holds first and second rows (or more) of work pieces, the first row being distal from the second row by a row separation distance. The dial can be oriented in a horizontal plane or a non-horizontal plane. Related methods of operation are also provided.
Abstract:
Material for surface treatment, mainly with thermo-reflexive and/or thermoinsulative characteristics, and with high water resistance level, contains first hollow glass bodies (1) with size fraction ranging from 65 to 110 μm, second, filler hollow glass bodies (2) intended to fill the spaces within main fraction of the bodies (1) and these second, filler hollowed glass bodies (2) have size fraction ranging from 30 to 105 μm, it also contains silicon dioxide processed to form of the nanoparticles and a binder (3). Hollow glass bodies (1, 2) will be mainly shaped as hollow, vacuumed microballs. A mixture forming the material can contain hollow glass bodies (1) making up 3 to 30% of its mass, filler hollow glass bodies making up 3 to 15% of its mass and silicon dioxide making up 1 to 17% of its mass. The material for surface treatment is health friendly, it can be used especially on the house façades and in industry, where it is applied on the surface (4), the heath transfer and incandescence of which is to be diminished.
Abstract:
A method is provided for creating a porous coating on a surface of a substrate by electrodeposition. The substrate is a part of the cathode. An anode is also provided. A coating is deposited or disposed on the surface by applying a voltage that creates a plurality of porous structures on the surface to be coated. Continuing to apply a voltage creates additional porosity and causes portions of the attached porous structures to detach. A covering layer is created by applying a voltage that creates a thin layer that covers the attached porous structures and the detached portions which binds the porous structures and detached portions together.
Abstract:
A new method for durably bonding layers of a functional material to surfaces physically and chemically bonds solid layer lubricants and other functional coatings to a substrate surface by first applying a bond layer of a selected substantially binder-free soft material onto the substrate surface by, for example, burnishing, and then applying the functional layer onto the bond layer. Example soft materials for the bond layer include soft oxides such as antimony trioxide and example solid layer lubricants include graphite, molybdenum disulfide and mixtures of such lubricants. The new method is a major improvement over conventional bonding or coating methods. The process is non-vacuum at ambient temperatures and requires no binders, adhesives, curing or baking. Lubricant performance is enhanced by orders of magnitude compared to conventional approaches. The method is inexpensive, environmentally friendly, applicable to almost any substrate material and scalable.
Abstract:
Embodiments of a superhydrophobic structure comprise a substrate and a hierarchical surface structure disposed on at least one surface of the substrate, wherein the hierarchical surface structure comprises a microstructure comprising a plurality of microasperities disposed in a spaced geometric pattern on at least one surface of the substrate. The fraction of the surface area of the substrate covered by the microasperities is from between about 0.1 to about 1. The hierarchical structure comprises a nanostructure comprising a plurality of nanoasperities disposed on at least one surface of the microstructure.
Abstract:
A microwave assembly having a substrate comprising a microwave device; said device having a die, a first layer having a dielectric constant between about 1.00 and about 1.45 and a thickness between about 0.05 and about 2 mm along with one or more layers chosen from an absorbing layer, an EMI blocking layer, a layer comprising conductive material or a metal cover.
Abstract:
In some embodiments, a method of producing a liquid-impregnated surface includes forming a solid particle suspension including a plurality of solid particles with an average dimension of between about 5 nm and about 200 μm. The solid particle suspension is applied to a surface by spray-depositing the solid particle suspension onto the surface. An impregnating liquid is also applied to the surface. The plurality of solid particles and the impregnating liquid collectively form a liquid-impregnated surface. The impregnating liquid can be applied after the solid particle suspension is applied, or the solid particle suspension can include the impregnating liquid, such that the solid particle suspension and the impregnating liquid are concurrently spray-deposited onto the surface.
Abstract:
The present invention provides a method for preparing a matte anti-fingerprint stainless steel decorative plate. The method comprises the steps of: 1) selecting a polymer coating material, wherein the polymer coating material is formed by mixing acrylic resin, a film forming material, an inorganic nano-filler, a solvent and an auxiliary agent, wherein the film forming material comprises the following ingredients based on the weight ratio: 30-50 parts of acrylate composite resin, 5-20 parts of amino resin, 5-15 parts of epoxy resin, 1-5 parts of an inorganic nano-filler, 40-50 parts of a solvent and 10-20 parts of an auxiliary agent; and 1-8 parts of a matting agent and 1-8 parts of an anti-settling agent are added; and 2) performing a spray coating using the polymer coating material, wherein a coating film has a thickness of 1.5-2.5 μm, the precision of the atomization air pressure of a spray gun is controlled at ±0.1 bar during spray coating, and the coating is dried to obtain a finished product and then a matte anti-fingerprint stainless steel decorative plate which has a high-standard matte and anti-fingerprint index is prepared.
Abstract:
A method for depositing a coating includes creating a vacuum within an interior volume of a tubular structure, wherein the tubular structure also includes an internal surface. Gas is supplied to the interior volume of the tubular structure, wherein the gas includes a plasma precursor in the gas phase. The tubular structure is biased relative to ground. Plasma having a density is formed and cyclically positioned along the length of the tubular structure. Positive ions of the plasma precursor gas are generated and are deposited on the internal surface forming a coating on the internal surface, wherein the coating exhibits a water contact angle of greater than 120°.