Abstract:
An electrically conductive adhesive comprises electrically conductive particles mixed in a non-conductive base at such a mixing ratio that the conductive particles are not in contact with one another. When this adhesive is disposed between facing electrodes, it provides electric conductivity between the facing electrodes but maintains electric insulation in the lateral direction.
Abstract:
A wiring substrate includes a core substrate including a through-hole conductor, a first resin insulating layer, a first conductor layer including a seed layer and an electrolytic plating layer, a via conductor formed such that the via conductor electrically connects the through-hole conductor and first conductor layer, and a second resin insulating layer covering the first conductor layer. The core substrate includes a glass substrate such that the through-hole conductor is penetrating through the glass substrate, the seed layer includes a first layer formed on the first resin insulating layer and a second layer formed on the first layer, and the first conductor layer includes a conductor circuit such that a width of the first layer is larger than a width of the second layer in the conductor circuit and a width of the electrolytic plating layer is larger than the width of the first layer in the conductor circuit.
Abstract:
A heat dissipator having a circuit formed by screen printing or spraying includes a circuit layer and an isolation layer. The circuit layer, which is on a surface of a heat dissipation part of the heat dissipator having the circuit formed by screen printing or spraying, is formed by screen printing or spraying a uniformly distributed plastic material and low electrical resistance conductive powder. The isolation layer is disposed on the circuit layer and the heat dissipation part.
Abstract:
A method includes steps of forming an inner coating on an object and forming an outer coating in contact with the inner coating. A first solution including metal oxide nanoparticles and a first solvent is applied onto the object. The first solvent is removed to form the inner coating with the metal oxide nanoparticles. A second solution having silicon dioxide nanoparticles and a second solvent is applied onto the object. The second solvent is removed to form the outer coating with the silicon dioxide nanoparticles. The interfacial binding force between the metal oxide nanoparticles and the silicon dioxide nanoparticles is then strengthened, for example, by applying a third solution such as water, ethanol or a mixture thereof to the inner coating and the outer coating.
Abstract:
A substrate for a printed circuit board according to an embodiment of the present invention includes a base film having an insulating property, and a metal layer formed on at least one surface side of the base film. In the substrate for a printed circuit board, a plurality of fine particles are disposed between the base film and the metal layer, and the fine particles are formed of a metal the same as a main metal of the metal layer or formed of a metal compound of the main metal. The fine particles preferably have an average particle size of 0.1 nm or more and 20 nm or less. The fine particles are preferably formed of a metal oxide or a metal hydroxide. The fine particles are preferably present between the base film and the metal layer so as to form a layer. The metal layer preferably includes a metal grain layer formed by firing metal nanoparticles.
Abstract:
A display apparatus includes a display panel, a driving integrated circuit (IC), and an anisotropic conductive film. The display panel includes a non-display area adjacent to a display area and an upper substrate and a lower substrate. The driving IC overlaps the non-display area. The anisotropic conductive film attaches the driving IC to the lower substrate and includes conductive balls with diameters that gradually increase toward the display area.
Abstract:
Provided is a thermosetting resin composition that contains 40 to 80 parts by volume of an inorganic filler with respect to 100 parts by volume of thermosetting resin solids and the inorganic filler. The inorganic filler contains (A) at least one type of particles selected from among gibbsite-type aluminum hydroxide particles and magnesium hydroxide particles having an average particle size (D50) of 1 to 15 μm; (B) aluminum oxide particles having an average particle size (D50) of 1.5 μm or less; and (C) a molybdenum compound, and the blending ratios (by volume) of the component (A), the component (B) and the component (C) with respect to 100% as the total amount of inorganic filler are component (A): 30 to 70%, component (B): 1 to 40%, and component (C): 1 to 10%.
Abstract:
A highly thermally conductive printed circuit board prevents electrochemical migration by inhibiting elution of copper ions. The printed circuit board is a metal-base printed circuit board including a metal base plate having an insulating resin layer and a copper foil layer stacked thereon in this order. In the printed circuit board, the insulating resin layer contains a first inorganic filler made of inorganic particles having particle diameters of 0.1 nm to 600 nm with an average particle diameter (D50) of 1 nm to 300 nm, and a second inorganic filler made of inorganic particles having particle diameters of 100 nm to 100 μm with an average particle diameter (D50) of 500 nm to 20 μm, and the first inorganic filler and the second inorganic filler are uniformly dispersed in the insulating resin layer.
Abstract:
A multilayer wiring substrate includes a number of insulating layers, each insulating layer including a glass ceramic. A number of internal conductor layers are formed between the insulating layers. Via conductors penetrate through the insulating layers and mutually connect the internal conductor layers in different layer locations. Surface conductor layers are formed on an outer surfaces in a lamination direction of the insulating layers. The insulating layers include outside insulating layers and inside insulating layers. A first aspect ratio representing an oblateness and sphericity of an external filler contained in the outside insulating layers is larger than a second aspect ratio representing an oblateness and sphericity of an internal filler contained in the inside insulating layers. A thermal expansion coefficient of the outside insulating layers is smaller than a thermal expansion coefficient of the inside insulating layers.
Abstract:
This antenna (10) has an underlying print layer (2) which is upon the surface of a material (1) to be printed in a predetermined antenna pattern, and an electro-less plating layer (3) applied to the surface of the underlying print layer (2). The underlying print layer (2) is formed from an ink (2a) and a metallic powder (2b). A portion of the particles of the metallic powder (2b) are entrained within the ink layer in which the ink (2a) has been printed in a substantially uniform thickness. Some particles which are of large particle size project from the ink layer, and a portion of the ink (2a) covering the projecting portions is removed.