Abstract:
An electronic device includes a printed circuit board (PCB) with a first conductive element and having a first side opposite a second side. The electronic device includes a wall disposed on the first side of the PCB and having a channel through the wall. The electronic device includes a supporting structure disposed on the second side of the PCB. The electronic device includes a connector which includes an electrically conductive based configured to provide a conductive path between the first conductive element and the channel and also includes a spring structure disposed between the electrically conductive base and the supporting structure.
Abstract:
A contact structure and assembly for a microelectronics device includes first and second electrically conductive contacts being helically shaped. A carrier element is attached to and positioned between the first and second contacts. The first and second contacts are in electrical communication with each other, and the first and second contacts are in a mirror image relationship with each other. A pair of insulating substrates each include electrically conductive members. A contact point on each of the first and second contacts is attached and electrically communicating to respective electrically conductive members such that the first and second electrically conductive contacts between the pair of insulating substrates form an electrically conductive package. A metal layer on the carrier element provides electrical conductivity through a first opening defined by the carrier element between the first and second portions of the helix shaped contact.
Abstract:
A connector includes an insulated housing having a slot and a transmission assembly located inside the insulated housing. The transmission assembly includes a main circuit board, an expanded circuit board, a plurality of first terminals and at least one second terminal. The expanded circuit board is stacked on the main circuit board and a first lateral side and a second lateral side of the expanded circuit board which are opposite to each other has a plurality of first electrical contacts and at least one second electrical contact, respectively. The first terminals and the at least one second terminal are plugged in the main circuit board. One ends of the first terminals are in electrical contact with the first electrical contacts respectively. The other ends of the first terminals bend and extend towards the second lateral side of the expanded circuit board.
Abstract:
A component mounting method includes: placing a mounting component in contact with, and on top of, an electronic component on a substrate, pressing a spring member against the mounting component using a jig such that the mounting component is pushed against the electronic component by the spring member, and fixing the spring member to the substrate, and removing the jig in a direction heading away from a mounting face of the substrate after the spring member has been fixed to the substrate.
Abstract:
An electrical connector adapted to receive a mating plug utilizes low-profile jack terminal contacts that can flex in their PCB-anchored base portions, which are substantially parallel to the PCB. Any bend in the distal connecting portion or in the intermediate transition portion of each terminal contact is gradual and forms an obtuse angle, thus minimizing stress concentrations. The contacts preferably are arranged in two oppositely facing and interdigitating rows of four contacts each. In one embodiment, the terminal contacts are anchored to the PCB by a contact cradle that constrains the base portion of each terminal contact at two spaced anchoring locations, allowing the base portion to flex therebetween. In another embodiment, the base portions of the terminal contacts are embedded in at least one elastomeric member, which is fitted to the PCB.
Abstract:
A spring finger interconnection system can include a plug and a receptacle. In one embodiment, the plug can include spring finger contacts configured to carry electrical signals. The receptacle can include a cavity to receive the plug and the cavity can be constructed with printed circuit board fabrication techniques. In one embodiment, the cavity can be formed, at least in part, in a pre-impregnation layer and a first and a second layer can be disposed above and below the pre-impregnation layer to further form the cavity. In one embodiment, contacts can be arranged on the first layer to contact the spring fingers when the plug is inserted into the cavity. In another embodiment, contacts can be arranged on both the first and the second layers. In yet another embodiment, the cavity can be shaped to aid in contact-to-spring finger alignment when the plug is inserted in the cavity.
Abstract:
An electronic component is provided with: an electronic component body including a top face, a bottom face, a pair of side faces, and a pair of end faces provided with an outside electrode; and a pair of metal terminals individually connected to the pair of outside electrodes of the electronic component body, wherein the metal terminals is electrically and mechanically connected to the outside electrode of the electronic component body, and is also in contact with bottom face of the electronic component. The electronic component requires no jig or a simple jig if any for securing a metal terminal and electronic component body in place.
Abstract:
A flexible metal interconnect structure for transmitting signals between IC devices in flexible electronic devices is formed between two compliant flexible material layers that are laminated together form a multi-layer flexible substrate. The interconnect structure is formed by two rows of spaced-apart conductive pads (metal islands) attached to the inside (facing) surfaces of the flexible material layers. Compliant micro-contact elements such as micro-springs provide sliding metal pressure contacts that maintain electrical connections between the islands during stretching of the composite sheet. Specifically, at least two micro-contact elements are attached to each metal island in one of the rows, with one element in sliding pressure contact with an associated first metal island in the opposing row and the second element in sliding pressure contact with an associated second metal island. The islands and sliding contacts can be patterned into high density traces that accommodate large strains.
Abstract:
Electrical components in an electronic device are mounted on substrates such as printed circuits. Printed circuits contain signal paths formed from metal traces. The signal lines in the signal paths of the printed circuits are coupled together using electrical connection structures such as printed circuit board-to-board connectors, contacts joined by anisotropic conductive film, or contacts joined using solder. Electrical connection structures may be surrounded by conductive resilient ring-shaped structures such as conductive foam structures or spring structures. The conductive foam structures may be provided with a metal layer with which the conductive foam structures are soldered to a ring of metal on a printed circuit. Strain relief structures may be formed from an elastomeric ring that surrounds the electrical connection structures or an overmolded plastic structure. Coating layers and conductive plastic may be used in providing strain relief structures with electromagnetic interference shielding capabilities.
Abstract:
A method includes providing a pad chip having contact pads, providing a spring chip having micro-springs, applying a chemical activator to one of either the pad chip or the spring chip, applying an adhesive responsive to the chemical activator on the other of the pad chip or the spring chip, aligning the pad chip to the spring chip such that the micro-springs will contact the contact pads, and pressing the pad chip and the spring chip together such that the chemical activator at least partially cures the adhesive.