Abstract:
A thermoplastic polymer film is directly extruded onto the heated surface of a metal condensing heat exchanger. Any thermoplastic polymer capable of being adhered to the metal surface of the condensing heat exchanger can be utilized. Preferably, the thermoplastic polymer is a polyester, a polyolefin with an added maleate or tackifier to ensure adhesion, polyetherimide, polyethersulfone, polysufone or polyimide. The thermoplastic film must be resistant to the conditions of the condensing heat exchanger, such as the high temperature flue vent gases and the acidic condensate formed from condensation.
Abstract:
An upper die unit (37) and a lower die unit (39) are disposed in opposition, with a gap, to a substrate (31) being conveyed, and provided with coating agent supply flow paths (97, 99) which have inlet paths (103, 105) for a coating agent to flow in and delivery ports (101, 102) for delivering the coating agent to coat the substrate (31) therewith. An accumulation piece (119, 121) installed in a flow path part (97b, 99b) of each die unit (37, 39) moves in the direction in which it goes away from the flow path part (97b, 99b), drawing in the coating agent, dwelling the delivery of the coating agent from the delivery port (101, 102), forming a non-coated part (F), and repeats a reciprocating action, repeating a coating and non-coating. An elastic plate (355) on a way of the coating agent supply flow path (339) is displaced in accordance with advance/retreat actions of a piston member (363) caused by a rotation of a cam (387).
Abstract:
Methods of high speed coating a pigment-containing liquid coating material onto a substrate so as to avoid visible pigment separation in the coating material in its as coated state. In the method, a pigment-containing liquid coating material is applied to a substrate, while the substrate is moving at a high line speed of at least about 15.24 m/min., to form a coated layer. The coating material is applied to the substrate along a substantially straight, dynamic wetting line where the coating material first contacts the moving substrate. The coating material is of the type that will exhibit visible pigment separation on its interface surface when the coating material is coated onto the fast moving substrate, without the use of a substantially straight wetting line. The wetting line is substantially straight when a significant amount of visible pigment separation does not occur at the chosen high line speed.
Abstract:
A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapor and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
Abstract:
A coating apparatus comprising a plurality of paint supply devices, a mouthpiece for dispensing a paint supplied from the paint supply devices, and a stage for holding a coated object. The mouthpiece comprises a plurality of outlet ports. Also, a coating method comprising relatively moving a mouthpiece and a coated object to coat the coated object with paint in which a diluent is added to the paint to form a paint/diluent mixture upon the start of the coating process. This paint/diluent mixture is used to coat the coated object upon the start of the coating process and until the process reaches a steady state. The flow of diluent is then stopped and the coating process is continued using only the paint in a steady state coating process. The flow of diluent is then started again to form a paint/diluent mixture as the coating process ends. A coating with a highly uniform thickness along the entire length of the coated object is produced by this method.
Abstract:
An improved method and apparatus for coating semiconductor substrates with organic photoresist polymers by extruding a ribbon of photoresist in a spiral pattern which covers the entire top surface of the wafer. The invention provides a more uniform photoresist layer and is much more efficient than are current methods in the use of expensive photoresist solutions. A wafer is mounted on a chuck, aligned horizontally and oriented upward. An extrusion head is positioned adjacent to the outer edge of the wafer and above the top surface of the wafer with an extrusion slot aligned radially with respect to the wafer. The wafer is rotated and the extrusion head moved radially toward the center of the wafer while photoresist is extruded out the extrusion slot. The rotation rate of the wafer and the radial speed of the extrusion head are controlled so that the tangential velocity of the extrusion head with respect to the rotating wafer is a constant.
Abstract:
A coating apparatus comprises an upstream lip and a downstream lip defining a slot between the two lips through which a coating liquid can be extruded; and a pair of guide rollers disposed on opposite side of the lips for guiding a support to move past the lips such that the coating liquid can be applied thereto, wherein the downstream lip has a coating operation surface facing and curved toward the support and, a curvature k of the curved coating operation surface being given asP.sub.2 /T.ltoreq.k.ltoreq.P.sub.1 /Twhere T represents the tension in the coated portion of the support, and P.sub.1 and P.sub.2 represent the pressures of the coating liquid acting on the support at upstream and downstream ends of said coating operation surface.
Abstract translation:涂覆装置包括上游唇缘和下游唇缘,其限定两个嘴唇之间的狭槽,通过该槽口可以挤出涂布液体; 以及一对引导辊,其设置在所述唇部的相对侧上,用于引导支撑件移动通过所述唇缘,使得所述涂覆液体能够施加到所述嘴唇上,其中所述下游唇缘具有面向所述支撑件并且朝向所述支撑件弯曲的涂覆操作表面, 弯曲涂布操作表面的曲率k被给定为P 2 / T k = P1 / T T表示载体的涂覆部分中的张力,P1和P2表示作用在载体上的涂布液体的压力 在所述涂覆操作表面的上游和下游端。
Abstract:
Apparatus for producing intermittent, discrete patterns of coating material onto discrete irregular substrate areas, such as electronic circuit boards, where the patterns have sharp, square leading and trailing edges, as well as side edges. A slot nozzle die has elongated air slots along the slot extrusion opening. In the operation of the apparatus, the air flow is initiated from both air slots prior to the initiation of the coating material flow. Also, the air flow is continued beyond that point in time, when the coating material flow ceases. The delays between the operations of the air flow and the hot melt flow are on the order of micro seconds. Alternatively, the lead and lag air start and stop times on each side of the film of coating material are different to control the exact disposition of the square cut-on and square cut-off coating edge on the circuit board. The air flow carries the film coating material to the circuit board for deposition in discrete areas thereon. The sharp cut-on and cut-off accommodate multiple discrete area coating or multiple automated circuit board coating. Methods are disclosed.
Abstract:
In a method for coating a shear-thinning cathode material having a high viscosity on a substrate, the substrate is drawn through a nip defined by a rotating backing roller and a notched bar disposed at a distance from the backing roller. The notched bar is convexly curved in shape in a region prior to the nip and is formed with a notch extending in from the curved region of the notched bar at the nip. The cathode material is supplied onto a first surface of the substrate, the first surface facing the notched bar. At least a portion of the first surface of the substrate is coated with a uniform thickness layer of the cathode material by applying steadily increasing shear forces to the supplied cathode material as the cathode material on the substrate is drawn into the nip and contacts the curved region of the notched bar. The cathode material layer is removed from contact with the notched bar by drawing the cathode material layer coated on the substrate past the notch in the notched bar.
Abstract:
Apparatus for producing intermittent, discrete patterns of foam coating material, onto discrete substrates or substrate areas, where the patterns have sharp, square leading and trailing edges, as well as side edges. A slot nozzle die has elongated air slots along the slot extrusion opening. Air flow is initiated from both air slots prior to the initiation of the foam flow. Also, the air flow is continued beyond that point in time when the foam flow ceases. The delays between the operations of the air flow and the foam coating flow are on the order of micro seconds. Alternatively, the lead and lag air start and stop times on each side of the foam coating material are different to control the exact disposition of the square cut-on and square cut-off coating edge on the substrate.