Abstract:
The invention includes one or more LED elements, a silicon substrate on which the LED elements are mounted via micro bumps and internally formed wiring is connected to the micro bumps, a heat insulation organic substrate which is stuck to the opposite side of the LED elements-mounting side of the silicon substrate and has through-holes in which the wiring goes through, a chip-mounting substrate which is stuck to the opposite side of the silicon substrate side of the heat insulation organic substrate and internally formed wiring is connected to wiring in the through-holes of the heat insulation organic substrate, and an LED control circuit chip which is connected to the wiring of the chip-mounting substrate via micro bumps, and mounted via the micro bumps on the opposite side of the heat insulation organic substrate side of the chip-mounting substrate.
Abstract:
A layer or layers for use in package substrates and die spacers are described. The layer or layers include a plurality of ceramic wells lying within a plane and separated by metallic vias. Recesses within the ceramic wells are occupied by a dielectric filler material.
Abstract:
Disclosed are a light emitting diode (LED) module and a lighting assembly. The lighting assembly comprises a light emitting device, a driver integrated circuit device for driving the light emitting device, a heat sink for dissipating heat generated from the light emitting device, and a heat shielding portion for blocking thermal interference between the driver integrated circuit device and the light emitting device. In the LED module, the driver integrated circuit device is disposed on the heat shielding portion. Accordingly, it is possible to block thermal interference between the light emitting device and the driver integrated circuit device and to decrease the size of the lighting assembly.
Abstract:
A first LED group including a plurality of LEDs is regularly arranged in a toric shape on the circumference of a center of an approximately rectangular substrate which is formed of ceramics. In addition, the first LED group including the plurality of LEDs is entirely covered in a toric shape with a sealing member. In addition, a second LED group including a plurality of LEDs is regularly arranged in a grid shape in the vicinity of the center of the approximately rectangular substrate. In addition, the LED group including the plurality of LEDs is entirely covered with a sealing member. In addition, the sealing member entirely covers the inside of the toric portion of a first region.
Abstract:
A thermal overload protection apparatus for protection of an electrical component is disclosed. In one exemplary implementation, such apparatus may comprise a switching element for short-circuiting or disconnecting electrical connections, an actuator apparatus for switching the switching element to a short-circuit or disconnect position, and a tripping element which trips the actuator apparatus on a thermally sensitive basis. In some implementations, the actuator apparatus may be configured to be switched over for activation from an inactive state, in which the switching element cannot be switched by the actuator apparatus, into a trippable state, in which the switching element is capable of being switched by the actuator apparatus. Innovations herein also relate to corresponding arrangements having a conductor track mount, at least one component arranged thereon, and at least one associated overload protection apparatus.
Abstract:
A method of fabricating a printed circuit board is disclosed. The method includes opening a first window in a first base board and opening a second window in a second base board and a resin layer. The resin layer is between the second base board and the first base board. The method further includes bonding the first base board and the second base board through the resin layer; placing a heat dissipating conductor in the first window in the first base board through the second window; placing a resin portion on the first base board in the second window; embedding a sub-board in the second window of the second base board; and bonding the sub-board with the first base board through the resin portion.
Abstract:
A battery pack including a battery cell having an electrode assembly of a cathode/separator/anode structure mounted in a battery case together with an electrolyte in a sealed state, and a protection circuit module (PCM) electrically connected to the battery cell. The PCM includes a protection circuit board (PCB) electrically connected to the battery cell, the PCB being provided on a region where a circuit is connected with a conductive pattern including a fusing part, having relatively high resistance, configured to fuse itself for interrupting the flow of current when a large amount of current is conducted.
Abstract:
A circuit board assembly including a heating device operated during cold boot startup includes a circuit board having a computer component. A thermal transfer device connected to the circuit board assembly acts when the computer component is operating to remove heat generated by the computer component. A heating device operates to heat the thermal transfer device. A field programmable gate array acts to energize the heating device when a temperature defining a cold startup condition at the computer component or the thermal transfer device is sensed. The thermal transfer device when heated by the heating device heats the computer component to greater than the temperature of the cold startup condition. A control device connected to the heating device provides an operational mode of the heating device.
Abstract:
A secondary battery including a bare cell, a protection circuit module electrically coupled to the bare cell, and a holder between the bare cell and the protection circuit module, wherein the protection circuit module includes a flexible printed circuit board having an upper and a lower surface, a charging/discharging terminal on the upper surface of the flexible printed circuit board and a protection circuit unit on the lower surface of the flexible printed circuit board opposite to the charging/discharging terminal, and the holder is disposed on the protection circuit unit on the lower surface of the flexible printed circuit board.
Abstract:
A temperature detection method for a semiconductor device and a power conversion apparatus are disclosed. A temperature detection device is used to detect the temperature for thermal protection of a power semiconductor device. The temperature detection device is placed in the proximity of a component having the power semiconductor device packaged therein, and either an emitter terminal or a collector terminal of the power semiconductor device. Since the temperature detection device is mounted on a circuit board, it does not require insulation from a cooling fin on which the power semiconductor device is mounted and lead wires can be eliminated.