Abstract:
A composite interface and methods of fabrication are provided for coupling a cooling assembly to an electronic device. The interface includes a plurality of thermally conductive wires formed of a first material having a first thermal conductivity, and a thermal interface material at least partially surrounding the wires. The interface material, which thermally interfaces the cooling assembly to a surface to be cooled of the electronic device, is a second material having a second thermal conductivity, wherein the first thermal conductivity is greater than the second thermal conductivity. At least some wires reside partially over a first region of higher heat flux and extend partially over a second region of lower heat flux, wherein the first and second regions are different regions of the surface to be cooled. These wires function as thermal spreaders facilitating heat transfer from the surface to be cooled to the cooling assembly.
Abstract:
PROBLEM TO BE SOLVED: To provide a silicon-on-insulator (SOI) substrate structure and a manufacturing method thereof which are simple and cost-efficient. SOLUTION: The method for manufacturing the SOI substrate structure is provided by oxidizing porous Si having a gradient. This porous Si having the gradient is formed by first implanting a (p-type or n-type) dopant into a substrate containing Si, activating this dopant using an activating annealing step, and then anodizing this implanted and activated dopant region in a solution containing HF. This Si having the gradient has a relatively coarse upper surface layer and a fine porous layer buried directly under this upper surface layer. According to the oxidation step, the fine buried porous layer is changed into a buried oxide layer, and the coarse upper surface layer is fused into a solid Si containing over-layer due to surface migration of Si atoms. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
A method is disclosed for forming a strained Si layer on SiGe, where the SiGe layer has improved thermal conductivity. A first layer (41) of Si or Ge is deposited on a substrate (10) in a first depositing step; a second layer (42) of the other element is deposited on the first layer in a second depositing step; and the first and second depositing steps are repeated so as to form a combined SiGe layer (50) having a plurality of Si layers and a plurality of Ge layers (41-44). The respective thicknesses of the Si layers and Ge layers are in accordance with a desired composition ratio of the combined SiGe layer. The combined SiGe layer (50) is characterized as a digital alloy of Si and Ge having a thermal conductivity greater than that of a random alloy of Si and Ge. This method may further include the step of depositing a Si layer (61) on the combined SiGe layer (50); the combined SiGe layer is characterized as a relaxed SiGe layer, and the Si layer (61) is a strained Si layer. For still greater thermal conductivity in the SiGe layer, the first layer and second layer may be deposited so that each layer consists essentially of a single isotope.
Abstract:
A spalling method includes depositing a stressor layer (5) on surface of a base substrate, and contacting the stressor layer with a planar transfer surface (15). The planar transfer surface is then traversed along a plane that is parallel to and having a vertical offset from the upper surface of the base substrate (10). The cleaved film (11) peels away from the base substrate and transfers to the planar transfer surface. The fixed distance of the vertical offset provides a uniform spalling force. Rather than using a planar transfer surface a transfer roller (30) can also be used. The roller has a curvature which is equal to the equilibrium curvature of the spalled material. There may also be an adhesive layer between the stressor layer and base substrate. The base substrate may be a semiconductor.
Abstract:
Ein Verfahren zum Abspalten einer Schicht von einem Block eines Halbleitersubstrats beinhaltet Ausbilden einer Metallschicht auf dem Block des Halbleitersubstrats, wobei eine Zugspannung in der Metallschicht so eingerichtet ist, dass ein Bruch in dem Block verursacht wird; und Entfernen der Schicht von dem Block an dem Bruch. Ein System zum Abspalten einer Schicht von einem Block eines Halbleitersubstrats beinhaltet eine Metallschicht, die auf dem Block des Halbleitersubstrats ausgebildet ist, wobei eine Zugspannung in der Metallschicht so eingerichtet ist, dass ein Bruch in dem Block verursacht wird, und wobei die Schicht so eingerichtet ist, dass sie an dem Bruch von dem Block entfernt wird.
Abstract:
Ein Verfahren für den Schichttransfer unter Verwendung einer mit Bor dotierten Silicium-Germanium(SiGe)-Schicht beinhaltet das Bilden einer mit Bor dotierten SiGe-Schicht auf einem Volumen-Silicium-Substrat; das Bilden einer oberen Silicium(Si)-Schicht über der mit Bor dotierten SiGe-Schicht; das Wasserstoffpassivieren der mit Bor dotierten SiGe-Schicht; das Verbinden der oberen Si-Schicht mit einem alternativen Substrat; und das Fortpflanzen einer Bruchstelle an einer Grenzfläche zwischen der mit Bor dotierten SiGe-Schicht und dem Volumen-Silicium-Substrat. Ein System für den Schichttransfer unter Verwendung einer mit Bor dotierten Silicium-Germanium(SiGe)-Schicht beinhaltet ein Volumen-Silicium-Substrat; eine auf dem Volumen-Silicium-Substrat gebildete, mit Bor dotierte SiGe-Schicht, so dass sich die mit Bor dotierte SiGe-Schicht unter einer oberen Silicium(Si)-Schicht befindet, wobei die mit Bor dotierte SiGe-Schicht so ausgebildet ist, dass sich nach Wasserstoffpassivieren der mit Bor dotierten SiGe-Schicht eine Bruchstelle an einer Grenzfläche zwischen der mit Bor dotierten SiGe-Schicht und dem Volumen-Silicium-Substrat fortpflanzt; und ein alternatives, mit der oberen Si-Schicht verbundenes Substrat.
Abstract:
A simple and direct method of forming a SiGe-on-insulator that relies on the oxidation of a porous silicon layer (or region) that is created beneath a Ge-containing layer is provided. The method includes the steps of providing a structure comprising a Si-containing substrate having a hole-rich region formed therein and a Ge-containing layer atop the Si-containing substrate; converting the hole-rich region into a porous region; and annealing the structure including the porous region to provide a substantially relaxed SiGe-on-insulator material.