Abstract:
PROBLEM TO BE SOLVED: To provide a complementary metal oxide semiconductor integration process that allows a plurality of silicide metal gates to be prepared on a gate dielectric.SOLUTION: There is provided a CMOS silicide metal gate integration method capable of eliminating a demerit of generation of variations in the height of poly Si gate stock which varies a silicide metal gate phase. The integration method minimizes the complexity of the process, thereby restraining the manufacturing cost of a CMOS transistor from increasing.
Abstract:
A strained Fin Field Effect Transistor (FinFET) (and method for forming the same) includes a relaxed first material having a sidewall, and a strained second material formed on the sidewall of the first material. The relaxed first material and the strained second material form a fin of the FinFET.
Abstract:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
Abstract:
A chip includes a CMOS structure having a bulk device (20) disposed in a first region (24) of a semiconductor substrate (50) in conductive communication with an underlying bulk region (18) of the substrate, the first region (24) and the bulk region (20) having a first crystal orientation. A SOI device (10) is disposed in a semiconductor-on-insulator ("SOI") layer (14) separated from the bulk region of the substrate by a buried dielectric layer (16), the SOI layer having a different crystal orientation from the first crystal orientation. In one example, the bulk device includes a p-type field effect transistor ("PFET") and the SOI device includes an n-type field effect transistor ("NFET") device. Alternatively, the bulk device can include an NFET and the SOI device can include a PFET. When the SOI device has a gate conductor (11) in conductive communication with a gate conductor (21) of the bulk device, charging damage can occur to the SOI device, except for the presence of diodes in reverse-biased conductive communication with the bulk region. The diodes are operable to conduct a discharge current to the bulk region when either a voltage on the gate conductor or a voltage on the source or drain region of the SOI device exceeds a diode's breakdown voltage.
Abstract:
A chip includes a CMOS structure having a bulk device (20) disposed in a first region (24) of a semiconductor substrate (50) in conductive communication with an underlying bulk region (18) of the substrate, the first region (24) and the bulk region (20) having a first crystal orientation. A SOI device (10) is disposed in a semiconductor-on-insulator ("SOI") layer (14) separated from the bulk region of the substrate by a buried dielectric layer (16), the SOI layer having a different crystal orientation from the first crystal orientation. In one example, the bulk device includes a p-type field effect transistor ("PFET") and the SOI device includes an n-type field effect transistor ("NFET") device. Alternatively, the bulk device can include an NFET and the SOI device can include a PFET. When the SOI device has a gate conductor (11) in conductive communication with a gate conductor (21) of the bulk device, charging damage can occur to the SOI device, except for the presence of diodes in reverse-biased conductive communication with the bulk region. The diodes are operable to conduct a discharge current to the bulk region when either a voltage on the gate conductor or a voltage on the source or drain region of the SOI device exceeds a diode's breakdown voltage.
Abstract:
PROBLEM TO BE SOLVED: To reduce the formation of misfit dislocation that may reduce the charge mobility and device performance. SOLUTION: There is provided a method of manufacturing a semiconductor structure and a semiconductor device, more specifically, an N-type FET device. The device includes a stress receiving layer provided on a stress inducing layer via a material at an interface between the layers, which reduces the occurrence and propagation of misfit dislocation in the structure. The stress receiving layer includes silicon (Si), the stress inducing layer includes silicon-germanium (SiGe), and the material includes carbon given by doping both layers during the period of the formation of the device. The carbon can be doped over the entire SiGe layer. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a high performance (surface channel) CMOS device provided with a mid gap work function metal gate. SOLUTION: An epitaxial layer is used for adjustment/reduction of a threshold voltage V t of PFET region and large amount of reduction in V t (up to 500 mV) which are required by a CMOS device provided with a mid gap metal gate. In this case, the counter doping using an in-site B (boron) doped epitaxial layer or B and C (carbon) codoped epitaxial layer is provided. Here, the doping of C is important to give a surface channel CMOS device provided with the mid gap metal gate while an excellent short channel effect is maintained by holding the shallow B profile through the additional degree of freedom to relaxing the diffusion of B (even in the case of the subsequent activation heat cycle). COPYRIGHT: (C)2004,JPO
Abstract translation:要解决的问题:提供一种具有中间间隙功能金属栅极的高性能(表面通道)CMOS器件。 解决方案:使用外延层来调整/降低PFET区域的阈值电压V t SB>,并且V T SB>的大量还原(高达500mV ),这是由设置有中间间隙金属栅极的CMOS器件所需要的。 在这种情况下,提供使用现场B(硼)掺杂外延层或B和C(碳)共掺杂外延层的反掺杂。 这里,C的掺杂对于提供具有中间间隙金属栅极的表面沟道CMOS器件而言是重要的,同时通过保持浅的B分布通过附加的自由度来放宽B的扩散(甚至 在随后的活化热循环的情况下)。 版权所有(C)2004,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide a method and circuit configuration effective for reducing plasma-induced charging damage on a device fabricated on a silicon-on- insulator(SOI) substrate. SOLUTION: An SOI circuit configuration effective for minimizing plasma- induced charging damage during fabrication comprises formation of charge collectors connected to the gate electrode and a semiconductor body, wherein each of the charge collectors has the same or substantially the same shape and dimension. The formation of a connecting structure between a device formed on the SOI substrate and the substrate is delayed until the later stages of processing.
Abstract:
OF THE DISCLOSUREBALANCING NFET AND PFET PERFORMANCE USING STRAINING LAYERSAn integrated circuit structure includes a substrate and at least one pair of complementary transistors on or in the substrate. The pair of complementary transistors comprises a first transistor and a second transistor. The structure also includes a first stress-producing layer on the first transistor and the second transistor, and a second stress-producing layer on the first stress-producing layer over the first transistor and the second transistor. The first stress-producing layer applies tensile strain force on the first transistor and the second transistor. The second stress-producing layer applies compressive strain force on the first stress-producing layer, the first transistor, and the second transistor.Fig. 3