Abstract:
A method is provided for forming a capping layer for a semiconductor structure including a silicide-forming metal (2) overlying silicon (1). According to the invention, a layer of nitride (51) is formed overlying the semiconductor structure and in contact with the silicide-forming metal (2). This layer is formed by sputtering form a target in an ambient characterized by a nitrogen flow less than about 45 sccm. The layer is therefore deficient in nitrogen, so that formation of an oxynitride at a native oxide layer (11) on the silicon is avoided and diffusion between the silicon (1) and the metal (2) is not inhibited.
Abstract:
PROBLEM TO BE SOLVED: To provide an improved method for forming a metallic silicide conductor in an integrated circuit. SOLUTION: A porous barrier is formed to prevent the thermal movement of silicon by enriching the grain boundary of a polysilicon layer 25 with nitrogen without forming an individual barrier layer. A reduction in the movement of the silicon prevents the agglomeration of the silicon in a metallic silicide layer formed on a policide gate/interconnection structure. The aggromelation of the silicon is a precedent advance phenomenon of a polycide inversion and hence effectively eliminates the polycide inversion passing through a lower oxide and damaging a device.
Abstract:
PROBLEM TO BE SOLVED: To provide a conductive contact having an atomically flat interface, and its manufacturing method. SOLUTION: A layer 12 containing cobalt and titanium is stuck on a silicon substrate 10 and the structure obtained is annealed at about 500 to 700°C under nitrogen containing atmosphere. A conductive material is stuck to the top of the annealed structure. A flat interface for preventing the conductive material from being diffused into a silicon substrate is formed. Then, with the use of this method a contact for an extremely small device or a shallow junction requited in a ULSI can be formed. COPYRIGHT: (C)1999,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide a method for manufacturing an SiGe-on-insulator substrate material substantially relaxed, of high quality, and capable of being used as a template for strained-silicon. SOLUTION: The SOI substrate having an ultra-thin top Si layer is used as the template for compressive strain SiGe growth. When an SiGe layer is relaxed at an enough temperature, the property of its dislocation movement is such that strain release defect moves down into the thin Si layer when an embedded oxide shows semi-viscosity behavior. The thin Si layer is consumed by oxidation of an interface of the thin Si with the embedded oxide. This can be performed by using inner oxidation at a high temperature. Therefore, the role of the original thin Si layer is to use the inner oxidation and subsequently to act as a sacrificial defective sink capable of being consumed during an SiGe alloy being relaxed. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
An integrated circuit is provided including a narrow gate stack having a width less than or equal to 65 nm, including a suicide region comprising Pt segregated in a region of the suicide away from the top surface of the suicide and towards an lower portion defined by a pulldown height of spacers on the sidewalls of the gate conductor. In a preferred embodiment, the spacers are pulled down prior to formation of the suicide. The suicide is first formed by a formation anneal, at a temperature in the range 250°C to 450°C. Subsequently, a segregation anneal at a temperature in the range 450°C to 550°C. The distribution of the Pt along the vertical length of the suicide layer has a peak Pt concentration within the segregated region, and the segregated Pt region has a width at half the peak Pt concentration that is less than 50% of the distance between the top surface of the suicide layer and the pulldown spacer height.
Abstract:
A strained Fin Field Effect Transistor (FinFET) (and method for forming the same) includes a relaxed first material having a sidewall, and a strained second material formed on the sidewall of the first material. The relaxed first material and the strained second material form a fin of the FinFET.
Abstract:
Verfahren zur Herstellung einer Halbleiter-Vorrichtung, wobei dieses Verfahren die folgenden Schritte umfasst: – Bereitstellen eines Wafers umfassend, ein Halbleiter-Substrat, ein Gate-Stack auf dem Substrat, einschließlich einem Halbleiter-Gate-Leiter, mit einer Breite von weniger als oder gleich 65 nm, wobei jeweils ein einzelner dielektrischer Abstandshalter die Seitenwände des Gate-Leiters abdeckt, und die Abstandshalter dabei die obere Oberfläche des Gate-Leiters freigelegt lassen; – Herunter ziehen der dielektrischen Abstandshalter um einen oberen Abschnitt der Seitenwände des Halbleiter-Gate-Leiters bis zu einer Pull-down-Abstandshalter-Höhe freizulegen; – Bilden einer dünnen Metallschicht über dem Wafer mindestens über der freiliegenden oberen Oberfläche und dem oberen Abschnitt der Seitenwände des Halbleiter-Gate-Leiters, wobei die dünne Metallschicht Ni und Pt umfasst; – Durchführen eines Bildungs-Erhitzens, sodass die dünne Metallschicht mit dem Gate-Leiter reagiert, um eine monosilizide Schicht zu bilden; – Entfernen der nicht reagierten Anteile der dünnen Metallschicht; und – nach dem Entfernen dieser besagten nicht reagierten Anteile der dünnen Metallschicht, Durchführen eines Trennungs-Erhitzens bei einer höheren Temperatur als das Bildungs-Erhitzen, sodass mindestens 50% des Pt in einem abgetrennten Bereich in einer unteren Hälfte dieser besagten monosiliziden Schicht zwischen einer oberen Oberfläche der besagten monosiliziden Schicht und der besagten Pull-down-Abstandshalter-Höhe befindlich sind.
Abstract:
An integrated circuit is provided including a narrow gate stack having a width less than or equal to 65 nm, including a suicide region comprising Pt segregated in a region of the suicide away from the top surface of the suicide and towards an lower portion defined by a pulldown height of spacers on the sidewalls of the gate conductor. In a preferred embodiment, the spacers are pulled down prior to formation of the suicide. The suicide is first formed by a formation anneal, at a temperature in the range 250°C to 450°C. Subsequently, a segregation anneal at a temperature in the range 450°C to 550°C. The distribution of the Pt along the vertical length of the suicide layer has a peak Pt concentration within the segregated region, and the segregated Pt region has a width at half the peak Pt concentration that is less than 50% of the distance between the top surface of the suicide layer and the pulldown spacer height.
Abstract:
An integrated circuit is provided including a narrow gate stack having a width less than or equal to 65 nm, including a silicide region comprising Pt segregated in a region of the silicide away from the top surface of the silicide and towards an lower portion defined by a pulldown height of spacers on the sidewalls of the gate conductor. In a preferred embodiment, the spacers are pulled down prior to formation of the silicide. The silicide is first formed by a formation anneal, at a temperature in the range 250° C. to 450° C. Subsequently, a segregation anneal at a temperature in the range 450° C. to 550° C. The distribution of the Pt along the vertical length of the silicide layer has a peak Pt concentration within the segregated region, and the segregated Pt region has a width at half the peak Pt concentration that is less than 50% of the distance between the top surface of the silicide layer and the pulldown spacer height.
Abstract:
Ein integrierter Schaltkreis wird bereitgestellt, mit einem schmalen Gate-Stack, mit einer Breite von weniger als oder gleich 65 nm, mit einem Silizid-Bereich, der einen von Pt abgetrennten Bereich des Silizid-Bereichs umfasst, beabstandet von der oberen Oberfläche des Silizids und getrennt von einem unteren Abschnitt, definiert durch eine Pull-down Höhe der Abstandshalter an den Seitenwänden des Gate-Leiters. In einer bevorzugten Ausführungsform werden die Abstandshalter vor der Bildung des Silizids heruntergezogen. Das Silizid wird zunächst durch ein Bildungs-Erhitzen bei einer Temperatur im Bereich von 250°C bis 450°C gebildet. Anschließend erfolgt ein Trennungs-Erhitzen bei einer Temperatur im Bereich von 450°C bis 550°C. Die Verteilung des Pt entlang der vertikalen Länge der Silizidschicht hat eine Pt-Spitzenkonzentration in dem abgetrennten Bereich, und der Pt abgetrennte Bereich hat eine Breite bei der halben Pt-Spitzenkonzentration von weniger als 50% des Abstandes zwischen der oberen Oberfläche der Silizidschicht und der Pull-down-Abstandshalter Höhe.