Abstract:
According to the invention, a carbon hard mask layer (2) is applied to a substrate to be structured (1) by means of a plasma-enhanced deposition method in such a way that it has a diamond-like hardness in at least one vertical section of a layer. During the production of said diamond-type vertical section of a layer, the deposition parameters are adjusted in such a way that certain diamond-type growth regions are removed in situ by means of subsequent etching processes, and other diamond-type regions remain.
Abstract:
Method for applying photoactive multilayer coatings (6) to substrates (3) for transfer of structures from a photomask into the substrate comprises applying a nitrogen-free dielectric anti-reflection layer (1) to the substrate. This consists of non-stoichiometric silicon oxide and has a surface (4) to which a photoactive resist layer (2) can be applied. An independent claim is included for multilayer coating systems as described.
Abstract:
The present invention provides a fabrication method for a semiconductor structure in a substrate, the semiconductor structure having at least two regions that are to be patterned differently. A fabrication of a patterned first region in the substrate, so that the semiconductor structure has a non-patterned second region and the patterned first region, is followed by a deposition of a cover layer that grows over the patterned first region, so that the cover layer above the patterned first region forms a closure, which covers over the patterned first region. This is followed by a fabrication of the patterned second region, the patterned first region remaining protected at least by the closure of the cover layer. The final step effected is a removal of the cover layer above the semiconductor structure, which now has two differently patterned regions.
Abstract:
The present invention relates to a carbon hard mask having a carbon layer and a bonding layer for bonding to metal. The present invention also relates to a process for producing this carbon hard mask, and to its use in the patterning of metallic layers, in particular in semiconductor fabrication.
Abstract:
Production of a structured layer on a semiconductor substrate comprises forming an N-containing dielectric antireflection layer (3) on the layer (2) to be structured on the substrate (1), forming an N-free SiOx layer (4) on the antireflection layer, forming a photolacquer layer on the SiOx layer, exposing the photolacquer (5) to form a prescribed structure on the photolacquer, developing the photolacquer layer to form a photolacquer structure, and transferring the photolacquer structure to the layer lying underneath to structure the layer. An Independent claim is also included for an alternative process for the production of a structured layer on a semiconductor substrate.
Abstract:
Eine schematische Veranschaulichung einer kapazitiven mikroelektromechanischen Vorrichtung 2 wird gezeigt. Die kapazitive mikroelektromechanische Vorrichtung 2 umfasst ein Halbleitersubstrat 4, eine Stützstruktur 6, ein Elektrodenelement 8, ein Federelement 10 und eine seismische Masse 12. Die Stützstruktur 6, beispielsweise eine Stange, eine Aufhängung oder ein Pfosten, ist fest mit dem Halbleitersubstrat 4 verbunden, welches Silizium umfassen kann. Das Elektrodenelement 8 ist fest mit der Stützstruktur 6 verbunden. Darüber hinaus ist die seismische Masse 12 über das Federelement 10 mit der Stützstruktur 6 verbunden, so dass die seismische Masse 12 in Bezug auf das Elektrodenelement 8 verschiebbar, auslenkbar oder beweglich ist. Darüber hinaus bilden die seismische Masse und das Elektrodenelement einen Kondensator mit einer Kapazität aus, welche von einer Verschiebung zwischen der seismischen Masse und dem Elektrodenelement abhängt.
Abstract:
Eine schematische Veranschaulichung einer kapazitiven mikroelektromechanischen Vorrichtung 2 wird gezeigt. Die kapazitive mikroelektromechanische Vorrichtung 2 umfasst ein Halbleitersubstrat 4, eine Stützstruktur 6, ein Elektrodenelement 8, ein Federelement 10 und eine seismische Masse 12. Die Stützstruktur 6, beispielsweise eine Stange, eine Aufhängung oder ein Pfosten, ist fest mit dem Halbleitersubstrat 4 verbunden, welches Silizium umfassen kann. Das Elektrodenelement 8 ist fest mit der Stützstruktur 6 verbunden. Darüber hinaus ist die seismische Masse 12 über das Federelement 10 mit der Stützstruktur 6 verbunden, so dass die seismische Masse 12 in Bezug auf das Elektrodenelement 8 verschiebbar, auslenkbar oder beweglich ist. Darüber hinaus bilden die seismische Masse und das Elektrodenelement einen Kondensator mit einer Kapazität aus, welche von einer Verschiebung zwischen der seismischen Masse und dem Elektrodenelement abhängt.
Abstract:
Following carbonaceous covering layer (2) deposition (e.g. by PCVD), ion implantation is carried out. Ionized carbon (4) or -nitrogen (4) is implanted into the covering layer. This converts the carbonaceous layer into diamond or a carbon nitride of the composition CxNy.
Abstract:
A plasma-enhanced chemical vapor deposition process for depositing relatively high dielectric constant silicon nitride or oxynitride to form an MIM capacitor is described. The flow rate ratios for the silicon nitride layer are: silane-to-ammonia between 1:20 and 6:5 and silane-to-nitrogen flow between 1:40 and 3:5. A pressure in the process chamber is between 260 Pa and 530 Pa. The flow rate ratios for the silicon oxynitride layer are: silane-to-dinitrogen monoxide between 1:2 and 25:4 and silane-to-nitrogen between 1:100 and 1:10. A larger, non-stoichiometric amount of silicon is incorporated in the layers as the flow rate of the silicon precursor is increased. The layers are deposited in substeps in which the deposition is interrupted between successive substeps. The layer is exposed to an oxygen-containing plasma such that electrically conductive regions of the layer are converted into electrically insulating regions as a result of interaction with the plasma.
Abstract:
A structured layer on semiconductor substrate is produced by modifying the layer surface, forming an acid-forming photoresist layer, exposing the photoresist layer to light for embodying an acid-containing layer in the photoresist layer in accordance with a specified structure of a photoexposure mask, and selectively removing the acid-containing region with a lye. Production of a structured layer on a semiconductor substrate involves forming the layer on the substrate (1), modifying the layer surface to form a chemically neutral surface, forming an acid-forming photoresist layer (3) on the layer on the substrate, exposing the photoresist layer to light for embodying an acid-containing layer in the photoresist layer in accordance with a specified structure of a photoexposure mask, and selectively removing the acid-containing region of the photoresist layer with a lye.