Abstract:
The disclosure relates to a method for manufacturing recessed micromechanical structures in a MEMS device wafer. First vertical trenches in the device wafer define the horizontal dimensions of both level and recessed structures. The horizontal face of the device wafer and the vertical sidewalls of the first vertical trenches are then covered with a self-supporting etching mask which is made of a self-supporting mask material, which is sufficiently rigid to remain standing vertically in the location where it was deposited even as the sidewall upon which it was deposited is etched away. Recess trenches are then etched under the protection of the self-supporting mask. The method allows a spike-preventing aggressive etch to be used for forming the recess trenches, without harming the sidewalls in the first vertical trenches.
Abstract:
This invention aims to protect an outer peripheral part of an upper surface of a silicon substrate with a protective film using a back plate. A conductive diaphragm (33) is arranged on an upper side of a silicon substrate (32) including a back chamber (35), and the diaphragm (33) is supported with an anchor (37). An insulating plate portion (39) is fixed to an upper surface of the silicon substrate (32) so as to cover the diaphragm (33) with a gap. A conductive fixed electrode film (40) is arranged on a lower surface of the plate portion (39) to configure a back plate (34). The change in electrostatic capacitance between the fixed electrode film (40) and the diaphragm (33) is outputted to outside from a fixed side electrode pad (45) and a movable side electrode pad (46) as an electric signal. A protective film (53) is arranged in continuation to the plate portion (39) at an outer periphery of the plate portion (39), which protective film (53) covers the outer peripheral part of the upper surface of the silicon substrate (32) and the outer periphery of the protective film (53) coincides with the outer periphery of the upper surface of the silicon substrate (32).
Abstract:
A method of transferring graphene onto a target substrate having cavities and/or holes or onto a substrate having at least one water soluble layer is disclosed. It comprises the steps of: applying a protective layer (4) onto a sample comprising a stack (20) formed by a graphene monolayer (2) grown on a metal foil or on a metal thin film on a silicon substrate (1); attaching to said protective layer (4) a frame (5) comprising at least one outer border and at least one inner border, said frame (5) comprising a substrate and a thermal release adhesive polymer layer, the frame (5) providing integrity and allowing the handling of said sample; removing or detaching said metal foil or metal thin film on a silicon substrate (1); once the metal foil or metal thin film on a silicon substrate (1) has been removed or detached, drying the sample; depositing the sample onto a substrate (7); removing said frame (5) by cutting through said protective layer (4) at said at least one inner border of the frame (5) or by thermal release.
Abstract:
Die Erfindung betrifft ein Schutzsystem für MEMS-Strukturen, mit einer fragilen offenen Struktur (12) und einer optionalen Opferschicht (13), aufgebracht auf einem Wafer (14), bei dem eine Schutzschicht (10) auf der Vorderseite der Struktur (12) aufgebracht ist, wobei die Schutzschicht (10) rückstandsfrei entfernbar ist, sowie ein Verfahren zur Vereinzelung von fragilen offenen MEMS-Strukturen.
Abstract:
The present invention proposes a production method for chips in which as many method steps as possible are carried out in the wafer assemblage, that is to say in parallel for a multiplicity of chips arranged on a wafer. This concerns a method for producing a multiplicity of chips whose functionality is realized on the basis of the surface layer (2) of a substrate (1). In this method, the surface layer (2) is patterned and at least one cavity (3) is produced below the surface layer (2) such that the individual chip regions (5) are interconnected and/or connected to the rest of the substrate (1) merely by means of suspension webs, and/or such that the individual chip regions (5) are connected to the substrate layer (4) below the cavity (3) by means of supporting elements (7) in the region of the cavity (3). The suspension webs and/or supporting elements (7) are separated during singulation of the chips. According to the invention, the patterned and undercut surface layer (2) of the substrate (1) is embedded into a plastics composition (10) before the singulation of the chips.
Abstract:
The invention relates to a method for producing a micromechanical membrane sensor or a membrane sensor produced by means of said method. According to the invention, the micromechanical membrane sensor comprises at least one first membrane and a second membrane arranged essentially above the first membrane. Furthermore, the micromechanical membrane sensor comprises a first cavity and a second cavity arranged essentially above the first cavity.
Abstract:
Ein Verfahren dient zum Herstellen einer Halbleiteranordnung (3), wobei insbesondere ein Wafer (1) mit einer Vielzahl von Chips (7) bildenden Halbleiteranordnungen hergestellt und der Wafer danach zerteilt und dadurch die Halbleiteranordnungen vereinzelt werden. Zumindest ein Bereich einer Waferseite wird während des Ätzens des übrigen Waferbereichs mittels einer Passivierungsschicht (9) abgedeckt. Nach dem Ätzen wird dann die Passivierungsschicht (9) entfernt. Zumindest in einem äußeren Randbereich des Wafers, gegebenenfalls zusätzlich im Verlauf der Wafer-Vorderseite, außerhalb der aktiven Chipfläche und insbesondere in den die jeweiligen Chipsysteme umgrenzenden Bereichen werden Haftzonen (8) für die Passivierungsschicht (9) geschaffen, die mit dem für die Passivierungsschicht verwendeten Material eine dichtende, insbesondere chemische Verbindung eingehen. Außerhalb der Haftzonen ist eine verminderte Haftfähigkeit vorhanden, so dass die Passivierungsschicht (9) zum Beispiel nach dem Rückseitenätzen in dem außerhalb der Haftzonen (8) liegenden Bereich mechanisch durch einen Flüssigkeitsstrom und/oder durch einen Gasstrom und/oder durch Ultraschallbeaufschlagung von der Waferoberfläche entfernt werden kann.
Abstract:
The present invention relates to microsystems having flexibility properties so as to enable folding of the microsystem in any three-dimensional direction. That is, enabling torsional and three-dimensionally non-linearly bending of the microsystem. The present invention provides a flexible three-dimensional microsystem compatible with hostile environments such as encountered within a biological body. In particular, provides a bio-compatible three-dimensional microsystem operational in hostile environments while biological acceptable to biological bodies. The present invention further provides an overall stress stability since forming a unitary structure eliminating stress induced or caused by joining various parts of different materials having different material properties into an assembly.
Abstract:
The microreactor is completely integrated and is formed by a semiconductor body (2) having a surface (4) and housing at least one buried channel (3) accessible from the surface of the semiconductor body (2) through two trenches (21a, 21b). A heating element (10) extends above the surface (4) over the channel (3) and a resist region (18) extends above the heating element and defines an inlet reservoir and an outlet reservoir (19, 20). The reservoirs (19, 20) are connected to the trenches (21a, 21b) and have, in cross-section, a larger area than the trenches. The outlet reservoir (20) has a larger area than the inlet reservoir (19). A sensing electrode (12) extends above the surface (4) and inside the outlet reservoir (20).