Abstract:
Vorgestellt wird eine Leiterplatte für Kraftfahrzeugbeleuchtungseinrichtungen, die einen Schichtstapel mit mehreren Metallschichten und mehreren dielektrischen Schichten aufweist. Erste metallische Durchkontaktierungen dienen zur thermischen Verbindung einer dritten mit einer zweiten Metallschicht. Zweite metallische Durchkontaktierungen dienen zur thermischen Verbindung der zweiten und einer ersten Metallschicht. Die Beleuchtungseinrichtung zeichnet sich durch fünf erste Durchkontaktierungen und vier zweite Durchkontaktierungen aus, wobei vier erste Durchkontaktierungen Eckpunkte eines ersten Rechtecks bilden, die fünfte der ersten Durchkontaktierungen im Schnittpunkt der Diagonalen des ersten Rechtecks liegt, und die vier zweiten Durchkontaktierungen auf den Eckpunkten eines zweiten Rechtecks liegen, wobei jeweils ein Eckpunkt des zweiten Quadrats in der Mitte einer Seite des ersten Rechtecks liegt.
Abstract:
An integrated circuit assembly which includes stacked printed ceramic substrate layers, and incorporates a shielding enclosure extending about the electrical conductor traces and interconnects which form the assembly circuitry. The shielding enclosure is configured to reduce electric and/or magnetic field leakage or interference with the traces and interconnects. The enclosure is provided as a cage about the assembly circuitry, and which is formed as arrays of ground conductors in electrical communication with ground plates.
Abstract:
The invention refers to a filter unit (1) and a corresponding printed circuit board (2). The filter unit (1) and the printed circuit board (2) have been equipped with modified end portions (7, 8, 22, 23) being matched such that a number of filter units (1) can be used on the printed circuit board (2) without changing the printed circuit board (2).
Abstract:
The present invention comprises a processed thin film substrate (10) and a method therefore, in order to produce a flexible printed circuit card, having a plurality of microvias going or passing through the thin film substrate and electrically connected along faced-away surfaces, in order to form an electric circuit. A first a number of real nano-tracks are filled with a first material (M1), having good electric properties, for the formation of a first number of, here denominated, first vias (V10, V30, V50), that a second number of real nano-tracks are filled with a second material (M2), having good electric properties, for the formation of a second number of, here denominated, second vias (V20, V40, V60). The first material (M1) and the second material (M2) of said first and second vias (V10-V60) are chosen having mutually different thermoelectric properties. A material surface-applied to the thin film substrate, coated on both sides (10a, 10b) of the thin film substrate (10), is distributed and/or adapted in order to allow the electrical interconnection of first vias, allocated the first material (M1), with second vias, allocated the second material (M2), and that a first via (V10) included in a series connection and a last via (V60) included in the series connection are serially co-ordinated in order to form an electric thermocouple (100) or other circuit arrangement.
Abstract:
Tuned Electromagnetic Bandgap (EBG)devices (10, 30), and a method for making and tuning tuned EBG devices (10, 30) are provided. The method includes the steps of providing first and second overlapping substrates (32, 32a), placing magnetically alignable conductive material (36) between the substrates (32, 32a), and applying a magnetic field (44, 45) in the vicinity of the magnetically alignable conductive material (36) to align at least some of the material into conductive vias (46, 47). The method further includes the steps of physically altering via characteristics of EBG devices (10, 30) to tune the bandpass and resonant frequencies of the EBG devices (10, 30).
Abstract:
Processes for fabricating a multi-layer circuit assembly and a multi-layer circuit assembly fabricated by such processes are provided. The process includes (a) providing a substrate at least one area of which comprises a plurality of vias, these area(s) having a via density of 500 to 10,000 holes/square inch (75 to 1550 holes/square centimeter); (b) applying a dielectric coating onto all exposed surfaces of the substrate to form a conformal coating thereon; and (c) applying a layer of metal to all surfaces of the substrate. Additional processing steps such as circuitization may be included.
Abstract:
In a transmission circuit board, ground terminal portions (10) are disposed at every other two rows in both end columns. Each of signal circuit layers (20) includes at least a pair of adjacent signal connecting portions electrically connected to a pair of the wiring portions (21, 22) arranged in parallel in a row direction and the column direction different from those on an adjacent signal circuit layer. Each of the ground layers is electrically connected to at least one of the ground terminal portions (10) in the both end columns.
Abstract:
Substrate (7; 7'; 10) and devices including such a substrate, the substrate having a first surface and a second surface extending substantially in parallel to the first surface, the substrate being of a material of a first conductivity and provided with a plurality of electrically conducting channels (21) which are extending exclusively in a direction perpendicular to the first and second surfaces, said channels having a second conductivity substantially larger than the first conductivity, the substrate being provided with at least one electrode (42) on either one of the first and second surfaces, contacting at least one of said channels, the at least one electrode (42) having a predetermined minimum dimension (D) in a contact area (A) with the substrate, and mutual distances between adjacent ones of the plurality of channels (21) being smaller than said minimum dimension of said at least one electrode (42).
Abstract:
L'invention concerne un ensemble de panneaux de circuit multicouche formé par stratification de panneaux de circuit (10) avec des couches intercalaire (12) contenant un matériau conductible coulant (48) dans les zones d'interconnexion et un matériau diélectrique coulant (30, 38) dans les autres zones. L'excès de matériau est capté dans des réservoirs (20) situés dans les panneaux du circuit. Lesdits matériaux coulants et les réservoirs permettent aux couches intercalaires de se comprimer et de compenser les tolérances des composants. Les panneaux superposés peuvent être pourvus de contacts (538) à leurs surfaces supérieures grâce à des conducteurs (527) s'étendant de la surface inférieure à la surface supérieure et des bornes (530) connectées à l'éxtrémité inférieure de chaque conducteur traversant. Les bornes et les contacts sont connectés les uns aux autres de manière non sélective au niveau de chaque interface de façon qu'à chaque fois qu'une borne et un contact sur des panneaux adjacents sont alignés l'un par rapport à l'autre, ils soient connectés l'un à l'autre. Cela permet de former des conducteurs composites verticaux s'étendant à travers une pluralité de panneaux. Le traitement sélectif des surfaces supérieures et inférieures des panneaux permet d'obtenir de manière sélective des interruptions dans les conducteurs verticaux.