Abstract:
도파로 절단면 형성 방법 및 이를 채용하는 포토닉스 소자가 제공된다. 이 방법은 기판 상에 도파로들을 포함하는 적어도 하나의 광소자 다이를 형성하고, 기판의 하부면에 적어도 하나의 트렌치를 형성한 후, 기판을 쪼갬으로써 트렌치의 상부에서 도파로들의 절단면들을 형성하는 단계를 포함한다. 이때, 트렌치는 도파로들의 아래에서 도파로들을 가로지르는 방향으로 형성된다.
Abstract:
PURPOSE: A resonant wavelength varying method of a ring resonator is provided to change a resonant wavelength of a ring resonator by inducing a refractive index phase change phenomenon of a dielectric layer. CONSTITUTION: A ring resonator includes a ring waveguide and a dielectric layer coating the ring waveguide. A refractive index phase change of the dielectric layer is induced by heating the ring resonator. A temperature of the refractive index phase change is determined by a deposition temperature of the dielectric layer. The ring waveguide includes silicon. The dielectric layer includes a cladding dielectric layer which covers the upper side and the lower side of the ring waveguide. The dielectric layer includes a first sub dielectric layer which covers the upper side of the ring waveguide.
Abstract:
본 발명은 넓은 파장가변 특성을 갖는 레이저와 TDM data 구조를 결합하고 여기에 필요한 광 부품을 적절히 활용함으로써 근거리 광 통신망인 WDM-PON 시스템에 채널교환기능을 추가하고 잠재적인 전송속도를 크게 확대한다. 또한 광원과 AWG의 파장천이가 있을 경우 Loop-Back 네트워크구조를 이용하여 추가적인 우회 회선 없이 파장을 추적하고 전달되는 신호의 크기를 최적화 한다. 그리고 전기적으로 파장을 변화시키는 파장가변 레이저를 이용하여 OLT(Optical line terminal)의 온도 안정화에 필요한 온도 제어기(TEC, thermo-electric controller)의 수를 최소화 한다. 파장 가변 레이저, 채널 교환, WDM-PON
Abstract:
본 발명은 단일집적 반도체 광대역 광원 제작에 관한 것이다. 제작된 반도체 레이저는 전자흡수(Electro Absorption; EA) 변조기(Modulator)와 반도체 광증폭기(Semiconductor Optical Amplifier;SOA)와 발광다이오드(Light Emitting Diode;LED)의 세 구성요소가 InP 기판위에 단일집적되어 있다. 변조기와 SOA와 LED 사이는 이온주입으로 전기적 절연되었으며, 각 전극에서 변조기와 SOA와 LED에 독립적으로 전류를 주입하게 되어 있다. 특히, 이온주입에 의한 전류차단층 형성과 전극간의 전기적 절연이지만 광학적으로 연결된 구조를 만드는 것이 소자성능에 중요하다. 본 발명은 동일한 활성층의 SOA와 LED를 단일집적으로 제작하여, LED 영역에서 생성된 광대역광이 SOA에서 증폭되고 변조기에서 변조되어 단일집적된 광대역 광원소자를 만드는 것이다. 반도체 레이저 다이오드, 광증폭기, SOA, 변조기, LED
Abstract:
PURPOSE: A widely tunable SG-DFB(Sampled Grating-Distributed FeedBack) laser diode oscillated according to a variation of refractive indexes of phase control regions is provided to enhance the optical efficiency by connecting directly optical waves of a gain region to an optical fiber without loss. CONSTITUTION: A widely tunable SG-DFB laser diode includes a first gain region and a second gain region. The widely tunable SG-DFB laser diode further includes a first SG-DFB structure and a second SG-DFB structure. The first SG-DFB includes a first sampled grating(34a) of a first period formed on the first gain region and a first phase control region(35a) formed between the first sampled gratings. The second SG-DFB includes a second sampled grating(34b) of a second period formed on the second gain region and a second phase control region(35b) formed between the second sampled gratings.
Abstract:
PURPOSE: A wavelength variation type semiconductor laser and a fabricating method thereof are provided to change continuously a wavelength within a broad wavelength band by applying the electric field or the current to electrodes. CONSTITUTION: A wavelength variation type semiconductor laser includes an optical waveguide, an active region, an electrode array, a Fabry-Perot filter, and a curve mirror. The optical waveguide is formed on a substrate in order to guide an optical signal by a cladding layer. The active region(14) is formed at a part of the optical waveguide in order to generate the optical signal. The electrode array(18) is formed at one side of the active region in order to change the traveling direction of the optical signal by applying the electric field and the current to a part of the optical waveguide. The Fabry-Perot filter(13) is used for filtering the optical signal of the selected wavelength. The curve mirror(17) is used for reflecting the optical signal.
Abstract:
PURPOSE: A method for forming two conductive layers insulated therebetween on an optical fiber is provided to form an electrode for polling the optical fiber by forming conductive layers at the optical fiber of a single mode or a multiple mode. CONSTITUTION: A plurality of grooves(120,121) are formed on an upper surface of a substrate(110). A plurality of optical fibers(126,127) are adhered on the grooves(120,121) by using photoresist(130,131). A photoresist pattern(140) is formed on a surface of the optical fibers. A plurality of conductive layers(145,145a,145b) are formed on the resultant including the photoresist pattern. The photoresist pattern is removed. The optical fibers are separated from the grooves. The conductive layer is removed from the photoresist pattern. The conductive layers are formed on an opposite side to the conductive layer.
Abstract:
본 발명은 광학 모듈, 광통신 장치, 및 그를 구비하는 정보처리 시스템을 개시한다. 그의 모듈은, 하부 클래드 층과, 상기 하부 클래드 층 상에서 일방향으로 연장되는 광 도파로와, 상기 광 도파로 상의 광 소자와, 상기 광 소자와 상기 광 도파로 사이에 배치되고, 상기 광 도파로의 굴절률 보다 큰 굴절률을 갖는 프리즘과, 상기 프리즘 및 상기 광 소자를 덮는 하우징과, 상기 프리즘에 인접하고 상기 하우징과 상기 광 도파로 사이에 배치된 전극 층을 포함한다.
Abstract:
PURPOSE: A method for forming waveguide facet and a photonic device embodying the same are provided to divide a substrate in a predetermined place in which photonic elements are partially sawn. CONSTITUTION: Light device dies are formed on a substrate(S1). One or more reference fiducial mark is formed in the predetermined area of the substrate(S2). First partially sawing areas are formed by the partially sawing process under the substrate(S3). Second partially sawing areas are formed by the partially sawing process on the substrate(S4). Full sawing lines are formed by performing the full sawing under the lower surface of the substrate(S5). Fragment substrates are divided into a plurality of fragment dies through a cleaving process(S6).
Abstract:
PURPOSE: An electro-optic modulating device is provided to form vertical PN junctions or vertical PIN junctions in an optical waveguide, thereby increasing a change of an effective refractive index during a device operation. CONSTITUTION: A semiconductor film(30) configuring an optical waveguide(WG) is arranged on a substrate(10). The optical waveguide comprises the first slab part(SP1), the second slab part(SP2), and a lip part(RP). The lip part includes a thickness thicker than the first and second slab parts. The first and second doping areas(D1,D2) are formed on the first and second slab parts respectively. A vertical doping area(50) configuring a vertical structure is formed in the lip part.