Abstract:
Disclosed is a method of determining a characteristic of interest relating to a structure on a substrate formed by a lithographic process, the method comprising: obtaining an input image of the structure; and using a trained neural network to determine the characteristic of interest from said input image. Also disclosed is a reticle comprising a target forming feature comprising more than two sub-features each having different sensitivities to a characteristic of interest when imaged onto a substrate to form a corresponding target structure on said substrate. Related methods and apparatuses are also described.
Abstract:
Disclosed herein is a method for determining one or more control parameters of a manufacturing process comprising a lithographic process and one or more further processes, the method comprising: obtaining an image of at least part of a substrate, wherein the image comprises at least one feature manufactured on the substrate by the manufacturing process; calculating one or more image-related metrics in dependence on a contour determined from the image, wherein one of the image -related metrics is an edge placement error, EPE, of the at least one feature; and determining one or more control parameters of the lithographic process and/or said one or more further processes in dependence on the edge placement error, wherein at least one control parameter is determined so as to minimize the edge placement error of the at least one feature.
Abstract:
A method includes projecting an illumination beam of radiation onto a metrology target on a substrate, detecting radiation reflected from the metrology target on the substrate, and determining a characteristic of a feature on the substrate based on the detected radiation, wherein a polarization state of the detected radiation is controllably selected to optimize a quality of the detected radiation.
Abstract:
A method of determining matching performance between tools used in semiconductor manufacture and associated tools is described. The method comprises obtaining a plurality of data sets related to a plurality of tools and a representation of said data sets in a reduced space having a reduced dimensionality. A matching metric and/or matching correction is determined based on matching said reduced data sets in the reduced space.
Abstract:
A method and system for predicting complex electric field images with a parameterized model are described. A latent space representation of a complex electric field image is determined based on dimensional data in a latent space of the parameterized model for a given input to the parameterized model. The given input may be a measured amplitude (e.g., intensity) associated with the complex electric field image. The complex electric field image is predicted based on the latent space representation of the complex electric field image. The predicted complex electric field image includes an amplitude and a phase. The parameterized model comprises encoder-decoder architecture. In some embodiments, determining the latent space representation of the electric field image comprises minimizing a function constrained by a set of electric field images that could be predicted by the parameterized model based on the dimensional data in the latent space and the given input.
Abstract:
Disclosed is a method for a metrology measurement on an area of a substrate comprising at least a portion of a target structure. The method comprises receiving a radiation information representing a portion of radiation scattered by the are, and using a filter in a Fourier domain for removing or suppressing at least a portion of the received radiation information that does not relate to radiation that has been scattered by the target structure for obtaining a filtered radiation information for the metrology measurement, wherein characteristics of the filter are based on target information about the target structure.
Abstract:
Disclosed is a method for obtaining a computationally determined interference electric field describing scattering of radiation by a pair of structures comprising a first structure and a second structure on a substrate. The method comprises determining a first electric field relating to first radiation scattered by the first structure; determining a second electric field relating to second radiation scattered by the second structure; and computationally determining the interference of the first electric field and second electric field, to obtain a computationally determined interference electric field.
Abstract:
A method and apparatus are described for providing an accurate and robust measurement of a lithographic characteristic or metrology parameter. The method includes providing a range or a plurality of values for each of a plurality of metrology parameters of a metrology target, providing a constraint for each of the plurality of metrology parameters, and calculating, by a processor to optimize/modify these parameters within the range of the plurality of values, resulting in a plurality of metrology target designs having metrology parameters meeting the constraints.
Abstract:
An inspection apparatus (140) measures asymmetry or other property of target structures (T) formed by a lithographic process on a substrate. For a given set of illumination conditions, accuracy of said measurement is influenced strongly by process variations across the substrate and/or between substrates. The apparatus is arranged to collect radiation scattered by a plurality of structures under two or more variants of said illumination conditions (p1-, p1, p1+; λ1-, λ1, λ1+). A processing system (PU) is arranged to derive the measurement of said property using radiation collected under a different selection or combination of said variants for different ones of said structures. The variants may be for example in wavelength, or in angular distribution, or in any characteristic of the illumination conditions. Selection and/or combination of variants is made with reference to a signal quality (302, Q, A) observed in the different variants.
Abstract:
Methods are disclosed for measuring target structures formed by a lithographic process on a substrate. A grating or other structure within the target is smaller than an illumination spot and field of view of a measurement optical system. The position of an image of the component structure varies between measurements, and a first type of correction is applied to reduce the influence on the measured intensities, caused by differences in the optical path to and from different positions. A plurality of structures may be imaged simultaneously within the field of view of the optical system, and each corrected for its respective position. The measurements may comprise first and second images of the same target under different modes of illumination and/or imaging, for example in a dark field metrology application. A second type of correction may be applied to reduce the influence of asymmetry between the first and second modes of illumination or imaging, for example to permit a more accurate overly measurement in a semiconductor device manufacturing process.