Abstract:
Disclosed herein is a non-transitory computer readable medium that has stored therein a computer program, wherein the computer program comprises code that, when executed by a computer system, instructs the computer system to perform a method for generating synthetic distorted images, the method comprising: obtaining an input set that comprises a plurality of distorted images; determining, using a model, distortion modes of the distorted images in the input set; generating a plurality of different combinations of the distortion modes; generating, for each one of the plurality of combinations of the distortion modes, a synthetic distorted image in dependence on the combination; and including each of the synthetic distorted images in an output set.
Abstract:
Described herein is a method for training a machine learning model to determine a source of error contribution to multiple features of a pattern printed on a substrate. The method includes obtaining training data having multiple datasets, wherein each dataset has error contribution values representative of an error contribution from one of multiple sources to the features, and wherein each dataset is associated with an actual classification that identifies a source of the error contribution of the corresponding dataset; and training, based on the training data, a machine learning model to predict a classification of a reference dataset of the datasets such that a cost function that determines a difference between the predicted classification and the actual classification of the reference dataset is reduced.
Abstract:
Parameters of a structure (900) are measured by reconstruction from observed diffracted radiation. The method includes the steps: (a) defining a structure model to represent the structure in a two- or three-dimensional model space; (b) using the structure model to simulate interaction of radiation with the structure; and (c) repeating step (b) while varying parameters of the structure model. The structure model is divided into a series of slices (a-f) along at least a first dimension (Z) of the model space. By the division into slices, a sloping face (904, 906) of at least one sub-structure is approximated by a series of steps (904', 906') along at least a second dimension of the model space (X). The number of slices may vary dynamically as the parameters vary. The number of steps approximating said sloping face is maintained constant. Additional cuts (1302, 1304) are introduced, without introducing corresponding steps.
Abstract:
A method of determining a stochastic metric, the method comprising: obtaining a trained model having been trained to correlate training optical metrology data to training stochastic metric data, wherein the training optical metrology data comprises a plurality of measurement signals relating to distributions of an intensity related parameter across a zero or higher order of diffraction of radiation scattered from a plurality of training structures, and the training stochastic metric data comprises stochastic metric values relating to said plurality of training structures, wherein the plurality of training structures have been formed with a variation in one or more dimensions on which said stochastic metric is dependent; obtaining optical metrology data comprising a distribution of the intensity related parameter across a zero or higher order of diffraction of radiation scattered from a structure; and using the trained model to infer a value of the stochastic metric from the optical metrology data.
Abstract:
An inspection tool comprising: an imaging system configured to image a portion of a semiconductor substrate; and an image analysis system configured to: obtain an image of a structure on the semiconductor substrate from the imaging system; encode the image of the structure into a latent space thereby forming a first encoding; subtract an artefact vector, representative of an artefact in the image, from the encoding thereby forming a second encoding; and 10 decode the second encoding to obtain a decoded image.
Abstract:
A method and system for predicting complex electric field images with a parameterized model are described. A latent space representation of a complex electric field image is determined based on dimensional data in a latent space of the parameterized model for a given input to the parameterized model. The given input may be a measured amplitude (e.g., intensity) associated with the complex electric field image. The complex electric field image is predicted based on the latent space representation of the complex electric field image. The predicted complex electric field image includes an amplitude and a phase. The parameterized model comprises encoder-decoder architecture. In some embodiments, determining the latent space representation of the electric field image comprises minimizing a function constrained by a set of electric field images that could be predicted by the parameterized model based on the dimensional data in the latent space and the given input.
Abstract:
A system and method for generating predictive images for wafer inspection using machine learning are provided. Some embodiments of the system and method include acquiring the wafer after a photoresist applied to the wafer has been developed; imaging a portion of a segment of the developed wafer; acquiring the wafer after the wafer has been etched; imaging the segment of the etched wafer; training a machine learning model using the imaged portion of the developed wafer and the imaged segment of the etched wafer; and applying the trained machine learning model using the imaged segment of the etched wafer to generate predictive images of a developed wafer. Some embodiments include imaging a segment of the developed wafer; imaging a portion of the segment of the etched wafer; training a machine learning model; and applying the trained machine learning model to generate predictive after-etch images of the developed wafer.
Abstract:
A method, system and program for determining a fingerprint of a parameter. The method includes determining a contribution from a device out of a plurality of devices to a fingerprint of a parameter. The method comprising: obtaining parameter data and usage data, wherein the parameter data is based on measurements for multiple substrates having been processed by the plurality of devices, and the usage data indicates which of the devices out of the plurality of the devices were used in the processing of each substrate; and determining the contribution using the usage data and parameter data.
Abstract:
A method and apparatus of detection, registration and quantification of an image is described. The method may include obtaining an image of a lithographically created structure, and applying a level set method to an object, representing the structure, of the image to create a mathematical representation of the structure. The method may include obtaining a first dataset representative of a reference image object of a structure at a nominal condition of a parameter, and obtaining second dataset representative of a template image object of the structure at a non- nominal condition of the parameter. The method may further include obtaining a deformation field representative of changes between the first dataset and the second dataset. The deformation field may be generated by transforming the second dataset to project the template image object onto the reference image object. A dependence relationship between the deformation field and change in the parameter may be obtained.
Abstract:
Systems and methods for image analysis include obtaining a plurality of simulation images and a plurality of non-simulation images both associated with a sample under inspection, at least one of the plurality of simulation images being a simulation image of a location on the sample not imaged by any of the plurality of non-simulation images; and training an unsupervised domain adaptation technique using the plurality of simulation images and the plurality of non-simulation images as inputs to reduce a difference between first intensity gradients of the plurality of simulation images and second intensity gradients of the plurality of non-simulation images.