Abstract:
The present invention provides a semiconductor device having dual nitride liners, which provide an increased transverse stress state for at least one FET (300) and methods for the manufacture of such a device. A first aspect of the invention provides a method for use in the manufacture of a semiconductor device comprising the steps of applying a first silicon nitride liner (360) to the device and applying a second silicon nitride liner (370) adjacent the fast silicon nitride liner, wherein at least one of the first and second silicon nitride liners induces a transverse stress in a silicon channel (330) beneath at least one of the first and second silicon nitride liner.
Abstract:
A method for forming asymmetric spacer structures for a semiconductor device includes forming a spacer layer over at least a pair of adjacently spaced gate structures disposed over a semiconductor substrate. The gate structures are spaced such that the spacer layer is formed at a first thickness in a region between the gate structures and at a second thickness elsewhere, the second thickness being greater than said first thickness. The spacer layer is etched so as to form asymmetric spacer structures for the pair of adjacently spaced gate structures.
Abstract:
A semiconductor fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a trench feature in a substrate, depositing fuse material in the trench feature and compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
Abstract:
A MIM capacitor includes a bottom plate (212), a capacitor dielectric (214) disposed over the bottom plate, and a top plate (216) disposed over the capacitor dielectric. An etch stop material (218) is disposed over the top plate, and the top plate has a width that is less than the width of the etch stop material width. The top plate edges may be pulled back during the removal of the resist (220) used to pattern the top plate, by the addition of chemistries in the resist etch that are adapted to pull-back or undercut the top plate edges (224) beneath the etch stop material.
Abstract:
A stressed film applied across a boundary defined by a structure or a body (e.g. substrate or layer) of semiconductor material provides a change from tensile to compressive stress in the semiconductor material proximate to the boundary and is used to modify boron diffusion rate during annealing and thus modify final boron concentrations. In the case of a field effect transistor, the gate structure may be formed with or without sidewalls to regulate the location of the boundary relative to source/drain, extension and/or halo implants. Different boron diffusion rates can be produced in the lateral and vertical directions and diffusion rates comparable to arsenic can be achieved. Reduction of junction capacitance of both nFETs and pFETs can be achieved simultaneously with the same process steps.
Abstract:
A method of fabricating a semiconductor device having a gate stack structure that includes gate stack sidewall, the gate stack structure having one or more metal layers comprising a gate metalis provided. The gate metal is recessed away from the gate stack sidewall using a chemical etch. The gate metal of the gate stack structure is selectively oxidized to form a metal oxide that at least partly fills the recess.
Abstract:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a capping layer and a dielectric layer. The dielectric layer is patterned so as to expose the capping layer. The capping layer is then sputter etched to remove the capping layer and expose the metal conductor. In the process of sputter etching, the capping layer is redeposited onto the sidewall of the pattern. Lastly, at least one layer is deposited into the pattern and covers the redeposited capping layer.
Abstract:
In a first aspect, a first method of manufacturing a finFET is provided. The first method includes the steps of (1) providing a substrate; and (2) forming at least one source/drain diffusion region of the finFET on the substrate. Each source/drain diffusion region includes (a) an interior region of unsilicided silicon; and (b) silicide formed on a top surface and sidewalls of the region of unsilicided silicon. Numerous other aspects are provided.
Abstract:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a capping layer and a dielectric layer. The dielectric layer is patterned so as to expose the capping layer. The capping layer is then sputter etched to remove the capping layer and expose the metal conductor. In the process of sputter etching, the capping layer is redeposited onto the sidewall of the pattern. Lastly, at least one layer is deposited into the pattern and covers the redeposited capping layer.