Abstract:
Compositions and methods of using said composition for removing polymeric materials from surfaces, preferably cleaning contaminant buildup from a lithography apparatus without total disassembly of said apparatus.
Abstract:
A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350 degree C, with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
Abstract:
A removal composition and process for selectively removing a first metal gate material (e.g., titanium nitride) relative to a second metal gate material (e.g., tantalum nitride) from a microelectronic device having said material thereon. The removal composition can include fluoride or alternatively be substantially devoid of fluoride. The substrate preferably comprises a high-k/metal gate integration scheme.
Abstract:
Compositions and methods of using the said composition for removing polymeric materials from surfaces, preferably cleaning contaminant buildup from a lithography apparatus without total disassembly of the said apparatus. The said compositions comprise at least one organic solvent and one non-ionic surfactant. Moreover, the pH of the said composition is about 5 to 9.
Abstract:
Germanium, tellurium, and/or antimony precursors are usefully employed to form germanium-, tellurium- and/or antimony-containing films, such as films of GeTe, GST, and thermoelectric germanium-containing films. Processes for using these precursors to form amorphous films are also described. Further described is the use of [{nBuC(iPrN)2)2Ge] or Ge butyl amidinate to form GeTe smooth amorphous films for phase change memory applications. Figure 13
Abstract:
A siloxane dielectric precursor for use in a chemical vapor deposition (CVD) process, which has been dosed with a stabilizing agent(s) selected from free-radical inhibitors, end-capping agents and mixtures thereof. The stabilized siloxane dielectric precursor reduces the occurrence of premature deposition reactions occurring in the heated environment of the CVD delivery lines and process hardware.
Abstract:
Tantalum precursors useful in depositing tantalum nitride or tantalum oxides materials on substrates, by processes such as chemical vapor deposition and atomic layer deposition. The precursors are useful in forming tantalum-based diffusion barrier layers on microelectronic device structures featuring copper metallization and/or ferroelectric thin films.