Abstract:
One of a plurality of capacitors embedded in a printed circuit structure includes a first electrode (415) overlaying a first substrate layer (505) of the printed circuit structure, a crystallized dielectric oxide core (405) overlaying the first electrode, a second electrode (615) overlying the crystallized dielectric oxide core, and a high temperature anti-oxidant layer (220) disposed between and contacting the crystallized dielectric oxide core and at least one of the first and second electrodes. The crystallized dielectric oxide core has a thickness that is less than 1 micron and has a capacitance density greater than 1000 pF/mm
Abstract translation:嵌入印刷电路结构中的多个电容器之一包括覆盖印刷电路结构的第一衬底层(505)的第一电极(415),覆盖第一电极的结晶化电介质氧化物芯(405),第二电极 615),以及设置在结晶的电介质氧化物芯和第一和第二电极中的至少一个之间并与其接触的高温抗氧化剂层(220)。 结晶的电介质氧化物芯的厚度小于1微米,电容密度大于1000pF / mm
Abstract:
A method of presenting content from a remote device is provided. Limited bandwidth content, transmitted from a remote device, is received at a local device. The limited bandwidth content is superimposed on enhanced content retrieved by the local device. The limited bandwidth content overlaps with the enhanced content such that the limited bandwidth content is a subset of what is represented by the enhanced content. The limited bandwidth or enhanced content may either be still images or video that is stitched together and displayed at the local device.
Abstract:
A device and method of modifying an image containing a foreground and an original or substitute background are disclosed. Boundary pixels contain only the original background or the original background and the foreground. The original background is replaced by a predetermined or random color or by a color corresponding to the substitute background. The entire boundary pixel can be replaced by the replacement color. Alternatively, the ratio of the foreground to the original background can be estimated from the neighboring pixels and only the original background replaced by the replacement color. Once some or all of the boundary pixels are replaced, the image can be transmitted or otherwise transferred to other devices or viewers. Some or all of the images in a video can be modified.
Abstract:
A high impedance surface (300) has a printed circuit board (302) with a first surface (314) and a second surface (316), and a continuous electrically conductive plate (319) disposed on the second surface (316) of the printed circuit board (302). A plurality of electrically conductive plates (318) is disposed on the first surface (314) of the printed circuit board (302), while a plurality of elements are also provided. Each element comprises at least one of (1) at least one multi-layer inductor (330, 331) electrically coupled between at least two of the electrically conductive plates (318) and embedded within the printed circuit board (302), and (2) at least one capacitor (320) electrically coupled between two of the electrically conductive plates (318). The capacitor (320) comprises at least one of (a) a dielectric material (328) disposed between adjacent electrically conductive plates, and (b) a mezzanine capacitor embedded within the printed circuit board (302).
Abstract:
A method for forming closed vies In a mgtfflayßr printed circuit board. A dielectric layer Is laminated to one side of a central. core having a metal layer on each side. A second dielectric layer is laminated to the other side of the central core. Closed vtas In the central core have been formed by drilling partially through but not completely penetrating the central core, and then completing the via from the opposite side with a hole that Is much smaller In diameter to form a pathway that penetrates completely through the central core from one side to another. The via is then plated with metal to substantially close the smaller hols. Approximately one half of the closed vlas are situated such that the closed aperture faces one dielectric layer and a remainder of the dosed vias are situated such that the closed aperture faces the other dielectric layer.
Abstract:
A process for forming a laminate with capacitance and the laminate formed thereby. The process includes the steps of providing a substrate and laminating a conductive foil on the substrate wherein the foil has a dielectric. A conductive layer is formed on the dielectric. The conductive foil is treated to electrically isolate a region of conductive foil containing the conductive layer from additional conductive foil. A cathodic conductive couple is made between the conductive layer and a cathode trace and an anodic conductive couple is made between the conductive foil and an anode trace.
Abstract:
A device and method of background substitution are disclosed. One or more cameras in a mobile device obtain a depth image. A processor in or external to the device segments the foreground from the background of the image. The original background is removed and a stored background image or video is substituted in place of the original background. The substituted background is altered dependent on the attitude and motion of the device, which is sensed by one or more sensors in the device. A portion of the stored background selected as the substitute background varies in correspondence with the device movement.
Abstract:
A method for forming closed vies In a mgtfflayßr printed circuit board. A dielectric layer Is laminated to one side of a central. core having a metal layer on each side. A second dielectric layer is laminated to the other side of the central core. Closed vtas In the central core have been formed by drilling partially through but not completely penetrating the central core, and then completing the via from the opposite side with a hole that Is much smaller In diameter to form a pathway that penetrates completely through the central core from one side to another. The via is then plated with metal to substantially close the smaller hols. Approximately one half of the closed vlas are situated such that the closed aperture faces one dielectric layer and a remainder of the dosed vias are situated such that the closed aperture faces the other dielectric layer.
Abstract:
A method for forming embedded capacitors on a printed circuit board is disclosed. The capacitor is formed on the printed circuit board by a depositing a first dielectric layer over one or more electrodes situated on the PCB. Another electrode is formed on top of the first dielectric layer and a second dielectric layer is deposited on top of that electrode. A third electrode is formed on top of the second dielectric layer. The two dielectric layers are abrasively delineated in a single step by a method such as sand blasting to define portions of the first and second dielectric layers to create a multilayer capacitive structure.
Abstract:
A method is for fabricating an embedded capacitance printed circuit board assembly (400, 1100). The embedded capacitance printed circuit board assembly includes two embedded capacitance structures (110). Each capacitance structure (110) includes a crystallized dielectric oxide layer (115) sandwiched between an outer electrode layer (120) and an inner electrode layer (125) in which the two inner electrode layers are electrically connected together. A rivet via (1315) and a stacked via (1110) formed from a button via (910) and a stacked blind via (1111) may be used to electrically connect the two inner electrode layers together. A spindle via (525) may be formed through the inner and outer layers. The multi-layer printed circuit board may be formed from a capacitive laminate (100) that includes two capacitance structures.