Abstract:
본 발명은 박막 트랜지스터의 소스-드레인 전류 모델링 방법에 관한 것으로, 본 발명의 일실시 예에 따른 박막 트랜지스터의 소스-드레인 전류 모델링 방법은, 표본 입력 값 및 표본 출력 값을 포함하는 표본 데이터를 입력받는 단계; 상기 표본 데이터에 상응하여 모델링 변수를 조정하는 단계; 상기 조정된 모델링 변수에 상응하여 전류 모델 값을 계산하는 단계; 상기 계산된 전류 모델 값과 상기 표본 출력 값의 차이 값이 미리 설정된 기준 값보다 작은 경우에는 상기 조정된 모델링 변수를 전류 모델에 적용하여 전류 모델을 피팅(fitting)하는 단계; 상기 피팅된 전류 모델에 실제 입력 데이터를 입력하는 단계; 및 상기 실제 입력 데이터에 상응하여 결과치를 출력하는 단계를 포함하되, 상기 전류 모델은 식(I DS = I leak + ( 1/I b + 1/I a ) -1 )에 의하여 드레인-소스 전류(I DS )를 계산한다. 여기서, I leak 는 박막 트랜지스터의 누설 전류, I b 는 문턱 전압(threshold voltage) 이하의 영역에서 계산되는 소스-드레인 전류 값인 제 1 전류 값, I a 는 문턱 전압 이상의 영역에서 계산되는 소스-드레인 전류 값인 제 2 전류 값이다. 상기와 같은 본 발명에 의하면, 산화물 TFT 뿐만 아니라 비결정질 실리콘 TFT 및 유기 TFT 에도 적용될 수 있는 정밀한 전류 모델을 제공할 수 있는 이점이 있다. TFT 모델, 드레인-소스 전류, 산화물 TFT
Abstract:
PURPOSE: An oxide semiconductor thin film composition is provided to obtain stable and transparent oxide semiconductor thin film having high mobility through low temperature process. CONSTITUTION: An oxide semiconductor thin film composition is amorphous state containing aluminum-containing oxide, zinc-containing oxide, indium-containing oxide, and tin-containing oxide. The ratio of the metal components is 30-95at% of zinc, 1-65at% of indium, 1-50at% of tin and remaining amount of aluminum.
Abstract:
A manufacturing method of a ZnO TFT is provided to reduce a defect inside a semiconductor thin film by controlling a deposition temperature after selecting oxygen plasma or ozone as oxygen precursor. A ZnO semiconductor film(30) is formed on a substrate(10) through an atomic layer deposition method using Zn precursor and ozone at a temperature of 250~350°C or Zn precursor and oxygen plasma at a temperature of 150~250°C. An insulation film(40) is formed on a top part of the ZnO semiconductor film through the atomic layer deposition method using the oxygen precursor selected from ozone or water at a temperature less than 250°C. A gate electrode(50) is formed on a top part of the insulation film. The ZnO semiconductor film has thickness of 5~40nm. The substrate is a substrate in which a source/drain electrode(20) is formed and a substrate in which the gate electrode and the insulation film are formed.
Abstract:
본 발명은 빛을 발산하는 발광층, 상기 발광층에 형성된 정공 주입층, 상기 정공 주입층과 대향되도록 상기 발광층에 형성된 전자 주입층, 상기 전자 주입층에 형성된 금속 나노 점(nano dot)을 포함하는 금속층, 및 상기 금속층에 형성된 투명 전도성 전극을 포함하는 실리콘 나노 점을 이용한 반도체 발광 소자 및 이의 제조 방법을 개시한다. 상기 발광층으로 실리콘 나노 점을 포함하는 비정질의 실리콘 나이트라이드를 포함한다. 실리콘 나노 점, 반도체 발광 소자, 금속층, 투명 전도성 전극
Abstract:
본 발명은 SOI 기판을 이용한 쇼트키 장벽 관통 트랜지스터 및 그 제조방법으로, 종래의 불순물을 주입하여 소스 및 드래인 영역을 구성하는 방식의 전계효과 트랜지스터 대신에 소스 및 드레인을 실리콘과 금속의 반응 물질인 실리사이드로 대체하여 금속-반도체간에 형성되는 쇼트키 장벽을 이용하여 제작하는 쇼트키 장벽 관통 트랜지스터를 제공한다. 쇼트키, SOI, 실리사이드, MOSFET
Abstract:
PURPOSE: A multi-channel long wavelength VCSEL array and a fabricating method thereof are provided to form constantly an interval of a laser oscillation wavelength by controlling a resonant interval. CONSTITUTION: A multi-channel long wavelength VCSEL array includes a semiconductor substrate(10), a bottom mirror(20), an active region(30), a current limit layer(40), a superlattice control layer(50), and a top mirror(60). The bottom mirror is formed on the semiconductor substrate. The active region is formed on the bottom mirror. The current limit layer is formed on the active region in order to limit efficiently the current and enhance the efficiency of the heat transfer. The superlattice control layer is formed on the current limit layer in order to control an interval of laser oscillation wavelength. The top mirror is formed on the superlattice control layer.
Abstract:
PURPOSE: A long wavelength vertical cavity surface emitting laser(VCSEL) and a method for manufacturing the same are provided to improve the current confinement structure by introducing a tunnel junction layer, a low energy ion injection and a heat spreading layer. CONSTITUTION: A long wavelength vertical cavity surface emitting laser(VCSEL) includes a laser active layer(30) and a current confinement structure(C). The current confinement structure(C) is provided with a barrier layer(40), a tunnel junction layer(50), a heat spread layer(60) and an electric insulation layer(70). The barrier layer(40) is formed on the laser active layer(30). The tunnel junction layer(50) is formed on the barrier layer(40) with stacking p-type and n-type materials alternatively. The heat spread layer(60) is formed on the tunnel junction layer(50). And, the electric insulation layer(70) is formed by using a low energy ion implantation method to electrically insulate the tunnel junction layer(50).
Abstract:
PURPOSE: A semiconductor optical device provided with a current confined structure is provided to secure the reliability by reducing the leakage current at the etched surface with filling an oxide layer or a nitride layer. CONSTITUTION: A semiconductor optical device provided with a current confined structure includes a semiconductor substrate(10), a first semiconductor layer(12), a second semiconductor layer(14), a third semiconductor layer(16). The first semiconductor layer(12) is formed on the semiconductor substrate(10) and made of at least one first conductive type of material. The second semiconductor layer(14) is formed on the first semiconductor layer(12) and is made of at least one material. The third semiconductor layer(16) is formed on the second semiconductor layer(16) and is made of at least one second conductive type of material which is opposite to the first conductive type. The first to third semiconductor layers(12,14,16) form the mesa structure, the side surface of at least one material layer constituting the first to third semiconductor layers(12,14,16) is recessed and the recessed portion is filled with oxide layer or a nitride layer, partially or totally.
Abstract:
PURPOSE: A method for fabricating an intracavity-contacted VCSEL including selective upper mirror layer growth is provided to simplify a heat emission path and a current injection path by using a selective region growth method. CONSTITUTION: A lower mirror layer(200), a laser resonance layer(300), a current injection hole forming layer, and an intracavity-contacted layer are sequentially grown on a substrate(100). An intracavity-contacted layer pattern(500) is formed by wet-etching the current injection hole forming layer. A mask pattern(600) is formed on the intracavity-contacted layer pattern(500). An upper mirror layer(250) is formed on an upper surface of the intracavity-contacted layer pattern(500). The first electrode(700) is formed on the intracavity-contacted layer pattern(500). The second electrode(750) is formed on a back surface of the substrate(100).
Abstract:
PURPOSE: A VCSEL(Vertical-Cavity Surface Emitting Laser) for long wavelength having a current caliber of an oxide layer is provided to minimize the loss of the current and the charges by using the InAlAs oxide layer for restraining the InAlAs current path layer. CONSTITUTION: An n-type lower mirror layer(120) and an active layer(130) are sequentially formed on an n-type InP substrate(110). The n-type lower mirror layer(120) satisfies a Bragg reflection condition. A current path layer(142) and a current limit layer(144) are formed on a part of the active layer(130). The current path layer(142) is surrounded by the current limit layer(144). A p-type internal resonance contact layer(150) is formed on the current path layer(142) and the current limit layer(144). An upper mirror layer(160) is formed on a part of the p-type internal resonance contact layer(150). A p-type electrode(170) is formed on the p-type internal resonance contact layer(150) and the upper mirror layer(160). An n-type electrode(180) is formed on a part of a back side of the n-type InP substrate(110).