Abstract:
A new method of forming circuit lines on a substrate by applying conductive metal(s) using copper foil as a carrier. The copper foil is etched away, leaving the conductive metals embedded in the surface of the substrate. A photoresist is used to expose trenches which define the desired circuit and copper is applied onto the exposed conductive metals. The method is particularly suited to manufacturing the outer layers of multi-layer circuit boards.
Abstract:
The present invention is directed to an improved method for metallizing polymer substrates, such as polyimides. The present invention comprises the steps of surface treating the polymer substrate with a plasma jet or corona discharge surface treatment, conditioning and etching the polymer substrate with an etching solution comprising a hydroxide and ionic palladium, activating the polymer substrate with ionic palladium, reducing the palladium on the polymer substrate, plating an electroless nickel layer onto the prepared polymer substrate, and plating an electroless copper layer over the electroless nickel layer. The process of the invention provides an improved method for preparing the polymer substrate for subsequent electrolytic plating thereon.
Abstract:
An electroless plating solution comprises an aqueous solution containing 0.025 to 0.25 mol/L of a basic compound, 0.03 to 0.15 mol/L of a reducing agent, 0.02 to 0.06 mol/L of copper ion and 0.05 to 0.3 mol/L of tartaric acid or a salt thereof. Another electroless plating solution comprises an aqueous solution containing a basic compound, a reducing agent, copper ion, tartaric acid or a salt thereof and at least one metal ion species selected from the group consisting of nickel ion, cobalt ion and iron ion. The electroless plating solution is used in an electroless plating process performing electroless copper plating, more specifically in a process for manufacturing a printed circuit board which comprises immersing a resin insulating substrate board in the electroless plating solution. The electroless plated film has a stress of 0 to +10 kg/mm 2 when formed on a roughened surface of the resin insulating substrate board.
Abstract:
A process is revealed whereby resistors can be manufactured integral with a printed circuit board by plating the resistors onto the insulative substrate. Uniformization of the insulative substrate through etching and oxidation of the plated resistor are discussed as techniques for improving the uniformity and consistency of the plated resistors. Trimming and baking are also disclosed as methods for adjusting and stabilizing the resistance of the plated resistors.
Abstract:
An electroless plating solution comprises an aqueous solution containing 0.025 to 0.25 mol/L of a basic compound, 0.03 to 0.15 mol/L of a reducing agent, 0.02 to 0.06 mol/L of copper ion and 0.05 to 0.3 mol/L of tartaric acid or a salt thereof. Another electroless plating solution comprises an aqueous solution containing a basic compound, a reducing agent, copper ion, tartaric acid or a salt thereof and at least one metal ion species selected from the group consisting of nickel ion, cobalt ion and iron ion. The electroless plating solution is used in an electroless plating process performing electroless copper plating, more specifically in a process for manufacturing a printed circuit board which comprises immersing a resin insulating substrate board in the electroless plating solution. The electroless plated film has a stress of 0 to +10 kg/mm 2 when formed on a roughened surface of the resin insulating substrate board.
Abstract:
A method for manufacturing a printed wiring board having a high-density wiring and a highly-reliable connection between conductor layers even if the annealing process is omitted because a conductor circuit made of an electroplating layer excellent in crystallinity and uniform electrodepositability and formed on a base sheet and a via hole are provided. The method comprising forming an interlayer resin insulating layer on a conductor wiring forming board, making an opening for making a via hole in the interlayer resin insulating layer, forming an electroless plating layer (1008) on the interlayer resin insulating layer, applying a resist film (1003) to the layer (1008), forming an electroplating film thereon, removing the resist film, and removing the electroless plating layer by etching so as to form a conductor wiring and a via hole characterized in that the electroless plating layer (1008) serves as a cathode, the plating metal serves as an anode, and electroplating is performed intermittently while maintaining the voltage between the anode and cathode at a constant value.
Abstract:
A process and product manufactured by the process is revealed whereby resistors (16) can be manufactured integral a printed circuit board (10, 13) by plating the resistors onto an insulative substrate (10). Uniformization of the insulative substrate by etching and oxidation of the plated resistor are revealed as techniques for improving the uniformity and consistency of the plated resistors.
Abstract:
A method for manufacturing a printed wiring board having a high-density wiring and a highly-reliable connection between conductor layers even if the annealing process is omitted because a conductor circuit made of an electroplating layer excellent in crystallinity and uniform electrodepositability and formed on a base sheet and a via hole are provided. The method comprising forming an interlayer resin insulating layer on a conductor wiring forming board, making an opening for making a via hole in the interlayer resion insulating layer, forming an electroless plating layer (1008) on the interlayer resin insulating layer, applying a resist film (1003) to the layer (1008), forming an electroplating film thereon, removing the resist film, and removing the electroless plating layer by etching so as to form a conductor wiring and a vai hole characterzed in that the electroless plating layer (1008) serves as a cathode, the plating metal serves as an anode, and electroplating is performed intermittently while maintaining the voltage between the anode and cathode at a constant value.