Abstract:
A high conductivity metallurgy interconnection system for semiconductor devices is formed of laminar stripes having a film of gold disposed between films of tantalum-nitrogen.
Abstract:
The fixed charge in an SiO2 dielectric layer for an MOS device is reduced by annealing the device after the SiO2 gate dielectric layer has been formed by thermal oxidation to a thickness less than 500 Angstroms wherein the annealing is accomplished in an argon or other Group VIII gas atmosphere at a temperature of at least 900*C for at least ten minutes.
Abstract:
A deposited film of gold is adhered to a layer of silicon dioxide by a deposited film of Beta tantalum. After the gold is deposited on the Beta tantalum, a second film of Beta tantalum is deposited on the gold. This forms a composite sandwich adhering the gold to the silicon dioxide without decreasing the conductivity of the gold and allowing another layer of silicon dioxide to be adhered to the second film of Beta tantalum.
Abstract:
Method of mfr. and stabilisation of a gate dielectric layer in MOS devices in order to reduce the fixed oxide charge in the gate duelectric layer without degrading the characteristic of the layer comprises forming a layer of >=1 SiO2, layer 500A thick on >=1 region of the gate by thermal oxidation of the monocrystalline silicon substrate and reheating the substrate in an atmosphere of He, Ne, Ar, Kr, or Xe, at 900 degrees C for >=10 mins. The gate dielectric layer is 100-300 A thick. The substrate is heated at 900-1100 degrees C for 9 mins to 100 hrs. pref. at 950-1050 degrees C for 15 mins to 24 hrs. in argon. The heat treatment in inert gas reduces the state of charge of the surface while N2 does not.
Abstract:
METAL-INSULATOR-SEMICONDUCTOR DEVICE MANUFACTURE A method of making a metal-oxide-semiconductor device is disclosed. A thin silicon dioxide insulating layer is formed on the surface of a planar silicon wafer. A first layer of intrinsic polycrystalline silicon is deposited over the dioxide layer, and a second layer of doped polycrystalline silicon is deposited over the intrinsic layer, thereby forming the gate. Subsequent hot processing steps result in diffusion of a portion of the dopant from the doped polycrystalline layer into and throughout the intrinsic layer so as to dope the latter. A metal contact layer is then deposited onto the gate and in superimposed vertical alignment with respect to the thin silicon dioxide insulating layer. The intrinsic nature of the first polycrystalline layer reduces grain growth and void formation in the polycrystalline silicon and thereby prevents the silicon dioxide from being attacked by hydrofluoric acid seeping through voids in the polycrystalline layer during subsequent processing. The yield for the manufacture of devices having thin oxide gates is substantially improved. FI 9-77-065
Abstract:
A method of making a metal-oxide-semiconductor device is disclosed. A thin silicon dioxide insulating layer is formed on the surface of a planar silicon wafer. A first layer of intrinsic polycrystalline silicon is deposited over the dioxide layer, and a second layer of doped polycrystalline silicon is deposited over the intrinsic layer, thereby forming the gate. Subsequent hot processing steps result in diffusion of a portion of the dopant from the doped polycrystalline layer into and throughout the intrinsic layer so as to dope the latter. A metal contact layer is then deposited onto the gate and in superimposed vertical alignment with respect to the thin silicon dioxide insulating layer. The instrinsic nature of the first polycrystalline layer reduces grain growth and void formation in the polycrystalline silicon and thereby prevents the silicon dioxide from being attacked by hydrofluoric acid seeping through voids in the polycrystalline layer during subsequent processing. The yield for the manufacture of devices having thin oxide gates is substantially improved.
Abstract:
A method of making a metal-oxide-semiconductor device is disclosed. A thin silicon dioxide insulating layer is formed on the surface of a planar silicon wafer. A first layer of intrinsic polycrystalline silicon is deposited over the dioxide layer, and a second layer of doped polycrystalline silicon is deposited over the intrinsic layer, thereby forming the gate. Subsequent hot processing steps result in diffusion of a portion of the dopant from the doped polycrystalline layer into and throughout the intrinsic layer so as to dope the latter. A metal contact layer is then deposited onto the gate and in superimposed vertical alignment with respect to the thin silicon dioxide insulating layer. The instrinsic nature of the first polycrystalline layer reduces grain growth and void formation in the polycrystalline silicon and thereby prevents the silicon dioxide from being attacked by hydrofluoric acid seeping through voids in the polycrystalline layer during subsequent processing. The yield for the manufacture of devices having thin oxide gates is substantially improved.
Abstract:
In a field effect device such as a charge coupled device or field effect transistor in which at least two levels of polycrystalline silicon conductors are used; these two levels of polycrystalline silicon are isolated from one another with a dielectric layer. Disclosed is a dielectric layer of reflowed phosphosilicate glass (PSG) on top surfaces of a polycrystalline silicon layer which may be doped by phosphorous impurities diffusing from the PSG.