Abstract:
Provided is a spectroscopic device of a new constitution, which is suited for detecting precisely a fluorescent light emitted from an inspection object in a fluorometric analysis, such as a DNA. The spectroscopic device (10) comprises a spectroscopic sensor body (21) for outputting the quantity of charge corresponding to the intensity of such a light of a spectroscopy object as corresponds to the intensity of a light having a wavelength component of a wavelength specified with the value of a gate electrode or larger, and a floating diffusion unit (51) for outputting a voltage according to the quantity of charge outputted from the spectroscopic sensor body (21). The floating diffusion unit (51) includes a plurality of serially connected charge wells (53 and 55), for which output voltages are individually detected.
Abstract:
A quantitative fluorescence image and appropriate brightness is acquired and observed. Provided is a fluorescence observation apparatus including: an illumination section that includes a light source for irradiating an observation target region with illumination light and excitation light; a fluorescence image acquisition section that acquires a fluorescence image from fluorescence produced in the observation target region; a white-light image acquisition section that acquires a reference image from return light returning from the observation target region; an exposure-time adjustment unit that adjusts the exposure time based on the luminance value of the reference image; a diaphragm control section and a semiconductor laser control section that control the intensity of the illumination light and that of the excitation light based on the exposure time; a first normalization section that normalizes the luminance of the reference image and the fluorescence image by the exposure time; a second normalization section that normalizes the luminance of the reference image and the fluorescence image by the light intensity; and an image correction section that corrects the fluorescence image by the reference image, by using at least one of the normalized reference image or fluorescence image.
Abstract:
A hand held measurement apparatus and method for in situ optical analysis of a specific display screen or viewing box and associated ambient light environment is disclosed. The apparatus uses a plurality of input collector optics and a plurality of optical filter/photodetectors as a device to separate the light output of an individual monitor screen, display screen, or viewing box and associated ambient light environment into key optical component intensities, the analysis of which are used to optimize the probability for a correct diagnosis by a qualified viewer/analyst. The optical signals are converted into digital electrical signals, processed, and compared to previously stored information of the specific viewing display and the viewing display environment in order to determine if the combination of viewing device and viewing environment is either GO (acceptable, in compliance) or NO GO (not acceptable, non-compliant) according to industry standards or approved procedures.
Abstract:
A system and method for detecting explosives and explosive residues. A region of interest is surveyed using a video capture device to thereby identify a target area wherein the target area comprises an unknown material. The target area is interrogated using SWIR spectroscopic methods to form a SWIR hyperspectral image of the target area. The SWIR hyperspectral image is analyzed to thereby identify the unknown material.
Abstract:
A light measuring device is disclosed which can take in light from different portions of a plane light source efficiently to carry out measurement. The light measuring device for measuring light from a plane light source includes a spatial division device configured to carry out operation for successively taking in light from different portions of the plane light source. An optical condensing device condenses the light from the different portions of the plane light source taken in by the operation of the spatial division device. A detector receives the light condensed by the optical condensing device and outputs a signal corresponding to the received light.
Abstract:
In a spectrographic workpiece metrology system having an optical viewing window, the viewing window is calibrated against a reference sample of a known absolute reflectance spectrum to produce a normalized reflectance spectrum of the reference sample, which is combined with the absolute reflectance spectrum to produce a correction factor. Successive production workpieces are measured through the window and calibrated against the viewing window reflectance, and transformed to absolute reflectance spectra using the same correction factor without having to re-load the reference sample.
Abstract:
Provided is a semiconductor photodetector element which is reduced in manufacturing cost and improved in precision. The semiconductor photodetector element includes: a first photodiode formed in a P-type silicon substrate; a second photodiode formed in the P-type silicon substrate and has the same structure as that of the first photodiode; a color filter layer formed above the first photodiode from a green filter; a color filter layer formed of a black filter above the second photodiode; and an arithmetic circuit portion which subtracts a detection signal of the second photodiode from a detection signal of the first photodiode.
Abstract:
A color measurement device includes an aperture for obtaining light from a color sample to be measured; a plurality of sets of color filters associated with human observer functions at different regions of color space; at least one detector for measuring the intensity of filtered light; an analog to digital converter for converting voltage signals from the at least one detector to digital values representative of tristimulus values associated with each of the sets of color filters; and a processor to combine the sets of tristimulus values in order to calculate a final set of tristimulus values, the combining being a function of at least one of the sets of tristimulus values.
Abstract:
The invention relates to spectrometer optics with a beam path from a beam source to a number of electro-optical sensors without spatial resolution, the beam path comprising an entry slot, a dispersive element, and a number of exit slots arranged on a focal curve, wherein furthermore: a first actuator for changing the angle of incidence ε between the beam from the entry slot to the dispersive element and from the normal to the dispersive element; a number of second actuators for moving the exit slots tangentially with respect to the focal curve or in a peripheral direction along the focal curve and a controller which is adapted to control the first actuator and the second actuators to carry out a calibration is provided.