Abstract:
A production method of a suspension board with circuit that can form the ground terminal for connection with the ground, while reducing the number of man-hour and complicated processes, and reduce production cost. After an insulating base layer is formed on a metal supporting board in such a manner that the base opening portion is formed in the metal supporting board, a conductive pattern comprising a ground wiring pattern and a signal wiring pattern is formed on the insulating base layer. Then, an insulating cover layer to cover the conductive pattern is formed on the insulating base layer in such a manner that a first cover opening portion and a second cover opening portion are formed in the insulating cover layer. Then, an electrolytic plating layer is formed on a surface of the ground terminal exposed from the first cover opening portion and on a surface of the ground connecting portion exposed from the second cover opening portion, feeding electric power from the ground wire. Thereafter, a metal filling layer is formed in the base opening portion so as to conduct the ground connecting portion and the metal supporting board.
Abstract:
A method for assembling an electrical circuit apparatus that includes; a substrate having a top side, a ground layer, at least one thermal aperture, and at least one solder aperture; a heat sink; and an adhesive layer for mechanically coupling the heat sink to the ground layer of the substrate, the adhesive layer having at least one aperture wherein aligning the at least one substrate solder aperture with the at least one adhesive layer aperture enables solder wetting in a predetermined area between the heat sink and the ground layer of the substrate.
Abstract:
A multilayer circuit board including a laminate of at least one insulating layer and at least one wiring layer. The wiring layer is formed by a composite member having a first metal layer and a second metal layer formed on one or both sides of the first metal layer. The first metal layer having a smaller coefficient of thermal expansion than the second metal layer. The second metal layer having a higher electric conductivity than the first metal layer. The insulating layer has a blind via-hole with a bottom provided by a surface of the second metal layer. A layer-to-layer interconnection portion is provided on the surface of the insulating layer and in the blind via-hole and is formed in the blind via-hole to be in contact with the surface of the second metal layer.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
A multilayer circuit board having a high level of reliability in terms of electric connection against temperature changes caused by the actual operation of electronic equipment, a manufacturing process, a substrate for multilayer circuitry, and an electronic apparatus. The multilayer circuit board comprises a laminate of at least one insulating layer and at least one wiring layer, wherein the wiring layer is formed by a composite member comprising a first metal layer and a second metal layer formed on one or both sides of the first metal layer, the first metal layer having a smaller coefficient of thermal expansion than the second metal layer, the second metal layer having a higher electric conductivity than the first metal layer, wherein the insulating layer has a blind via-hole with a bottom provided by a surface of the second metal layer, the circuit board further comprising a layer-to-layer interconnection portion on the surface of the insulating layer and in the blind via-hole, wherein the layer-to-layer interconnection portion in the blind via-hole is formed in such a manner as to be in contact with the surface of the second metal layer.
Abstract:
The density of electronic packaging and the electrical reliability of the sub-assemblies utilizing stacked blind vias are improved by providing a blind, landless via in a first dielectric layer laminated to a conductive metal core serving as a ground plane or a power plane. A hole is provided through the dielectric layer extending to the core. A metal, such as copper, is deposited electrolytically using the metal core as the cathode, or electrolessly without seeding into the hole. The metal is deposited on the core and progressively builds in the hole to the depth required for the via. A second dielectric layer is laminated to the first, and is provided with a second layer blind via aligned with the first via. This second via may be formed by conventional plating techniques. Multiple dielectric layers with stacked blind vias can be assembled in this manner.
Abstract:
An electronic package and method of formation. A thermally conductive layer having first and second opposing surfaces is provided. A first dielectric layer is laminated under pressurization to the first opposing surface of the thermally conductive layer, at a temperature between a minimum temperature T1MIN and a maximum temperature T1MAX. T1MAX constrains the ductility of the first dielectric layer to be at least D1 following the laminating. T1MAX depends on D1 and on a first dielectric material comprised by the first dielectric layer. A second dielectric layer is laminated under pressurization to the second opposing surface of the thermally conductive layer, at a temperature between a minimum temperature T2MIN and a maximum temperature T2MAX. T2MAX constrains the ductility of the second dielectric layer to be at least D2 following the laminating. T2MAX depends on D2 and on a second dielectric material comprised by the second dielectric layer.
Abstract translation:电子封装和形成方法。 提供具有第一和第二相对表面的导热层。 第一电介质层在加压下被层压在导热层的第一相对表面上,温度在最低温度T 1 1MIN和最高温度T 1MAX之间。 在层压之后,T 1MAX 3将第一介电层的延展性约束至少为D 1。 T 1MAX取决于D 1和在由第一介电层组成的第一电介质材料上。 在加压下将第二电介质层在导热层的第二相对表面上,在最低温度T 2 M 2 N 2和最大温度T 2 MAX之间的温度下层压。 在层压之后,T 2MAX 2将第二介电层的延展性约束为至少D 2。 T 2MAX取决于D 2和在由第二介电层组成的第二电介质材料上。
Abstract:
A multi-layer electronic circuit board design 10 having selectively formed apertures or cavities 26 which have improved solder-wetting characteristics.
Abstract:
A circuit board and a fabricating process thereof is provided. The present invention employs a core layer as a base layer, wherein the core layer is a core conducting layer, or is a core dielectric layer having two conducting layers. By using this core layer and two patterned conductive layers, a three-conducting-layer circuit board or a four-conducting-layer circuit board is fabricated. Furthermore, both circuit boards can be used as circuit board units to fabricate circuit boards having more than four conducting layers. The present invention adopts lamination processes and equipment instead of using complicated build-up process. Therefore, the present invention effectively reduces the production costs and simplifies the process cycle for fabricating circuit boards, and is suitable for mass production.
Abstract:
Provided is a process for creating vias for a circuit assembly including the steps of (a) applying a curable coating composition to a substrate, some or all of which is electrically conductive, to form an uncured coating thereon; (b) applying a resist over the uncured coating; (c) imaging the resist in predetermined locations; (d) developing the resist to expose predetermined areas of the uncured coating; (e) removing the exposed areas of the uncured coating; and (f heating the coated substrate of step (e) to a temperature and for a time sufficient to cure the coating. Also disclosed is a process of fabricating a circuit assembly.