Abstract:
An object of the present invention is to provide a capacitor-incorporated wiring substrate in which connection reliability can be improved through ensuring of a path for supply of electric potential even upon occurrence of a faulty connection in a via-conductor group. In a capacitor-incorporated wiring substrate of the present invention, a capacitor 50 is accommodated in a core 11, and a first and a second buildup layers 12 and 13 are formed on the upper and lower sides, respectively, of the capacitor 50.
Abstract:
A printed circuit board disclosed. One embodiment of the present invention provides a printed circuit board that includes: an insulation layer having multiple layers of circuit wirings formed therein; a via formed along a perimeter of the insulation layer and configured for connecting circuit wirings formed on different layers of the insulation layer, the via being formed in such a way that an inside thereof is hollow; and an electromagnetic wave absorbing part contained in the via.
Abstract:
There is provided a space transformer for a probe card, including: a substrate having a first surface and a second; a plurality of first pads formed on the first surface to be spaced apart from each other and connected to a printed circuit board of a probe card; a plurality of second pads formed on the second surface in positions corresponding to those of the first pads and receiving external electrical signals applied thereto; a plurality of via electrodes penetrating through the substrate and respectively connected to the plurality of first pads and the plurality of second pads formed in the positions corresponding to each other; a ground layer formed to cover the second surface and provided with a plurality of second pad exposure holes; and an insulating layer formed to cover the ground layer and the plurality of second pads.
Abstract:
A method of manufacturing a through-hole electrode substrate includes forming a plurality of through-holes in a substrate, forming a plurality of through-hole electrodes by filling a conductive material into the plurality of through-holes, forming a first insulation layer on one surface of the substrate, forming a plurality of first openings which expose the plurality of through-hole electrodes corresponding to each of the plurality of through-hole electrodes, on the first insulation layer and correcting a position of the plurality of first openings using the relationship between a misalignment amount of a measured distance value of an open position of a leaning through-hole among the plurality of through-holes and of a design distance value of the open position of the leaning through-hole among the plurality of through-holes with respect to a center position of the substrate.
Abstract:
A magnetodielectric substrate includes a first dielectric layer, a second dielectric layer, conductive patterns, and a plurality of air vias. The first dielectric layer has a predetermined height, and the second dielectric layer is stacked on the first dielectric layer. Conductive patterns are coated on an upper surface and a lower surface of one of the first and second dielectric layers. A plurality of air vias is formed with a predetermined diameter and a predetermined interval such that they pass through up to the conductive patterns of the upper and lower surfaces from the dielectric layer on which the conductive patterns are coated.
Abstract:
A multi-layer printed circuit board has a number of landing pads that are configured to engage a connector secured thereto. Between the landing pads associated with different signals is at least one micro via that is electrically connected to a ground plane on an outer surface of the multi-layer printed circuit board, and a ground plane on an inner layer of the multi-layer printed circuit board.
Abstract:
A filter of the present invention includes a plurality of via structures with a multilayer substrate. Each of the plurality of via structures includes first, second and third functional sections. One end of a signal via of the first functional section is connected to one end of a signal via of the second functional section and another end of the signal via of the second functional section is connected to two signal vias of the third functional section. Those signal vias are surrounded by a plurality of ground vias. Input and output ports of the filter are connected to another end of the signal via of each first functional section.
Abstract:
A process for fabricating a multi-layer circuit assembly is provided. The process includes (a) providing a substrate at least one area of which comprises a plurality of vias area(s) having a via density of 500 to 10,000 holes/square inch (75 to 1550 holes/square centimeter); (b) applying a dielectric coating onto all exposed surfaces of the substrate to form a conformal coating thereon; (c) removing the dielectric coating in a predetermined pattern to expose sections of the substrate; (d) applying a layer of metal to all surfaces to form metallized vias through and/or to the electrically conductive core; (e) applying a resist to the metal layer to form a photosensitive layer thereon; (f) imaging resist in predetermined locations; (g) developing resist to uncover selected areas of the metal layer; and (h) etching uncovered areas of metal to form an electrical circuit pattern connected by the metallized vias.
Abstract:
An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.
Abstract:
A method and a structure for a coaxial via that extend along the entire length of a signal via in a printed circuit board. Signal integrity is improved by providing ground shield for the entire length of the coaxial via. The ground shielding can be implemented by either providing ground cage vias around a signal via and routing a trace to the signal via on a built up layer or by providing a semi circle ground trench through a build up layer to permit a trace access to the signal via.