Abstract:
Provided is a device for determining the surface topology and associated color of a structure, such as a teeth segment, including a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
An apparatus for receiving Raman scattering signals, includes an optic light-collection system for collecting Raman scattering lights having scattered from an object when excitation laser beams are irradiated thereto, a spectroscope including a diffraction grating, for separating the Raman scattering lights into its spectral components, and an optical path converter including at least one optical waveguide for converting lights having been collected by the optic light-collection system into slit-shaped lights in compliance with an orientation of the diffraction grating.
Abstract:
The present invention further relates to the selection of the specific filter combinations, which can provide sufficient information for multivariate calibration to extract accurate analyte concentrations in complex biological systems. The present invention also describes wavelength interval selection methods that give rise to the miniaturized designs. Finally, this invention presents a plurality of wavelength selection methods and miniaturized spectroscopic apparatus designs and the necessary tools to map from one domain (wavelength selection) to the other (design parameters). Such selection of informative spectral bands has a broad scope in miniaturizing any clinical diagnostic instruments which employ Raman spectroscopy in particular and other spectroscopic techniques in general.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of an object are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a data base.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
To increase the sensitivity of detector arrangements, it is known that light deflection elements in the form of a line arrays having spherical elements may be used to focus incident light onto light-sensitive regions of the detector. Manufacturing such line arrays is complex and cost intensive, especially in small lot numbers. The increased sensitivity of the detector array can be achieved easily and inexpensively by using a novel light deflection element. The detector arrangement therefore has a light deflection element having light entrance surfaces, deflecting incident light by refraction onto light-sensitive regions of the detector. Light entrance surfaces of the light deflection element are inclined with respect to one another and are designed as planar surfaces. The detector arrangement is suitable in particular for detection of light emanating from a specimen in a microscope, preferably in a laser-scanning microscope.
Abstract:
A scattered-light spectroscopy system for collecting light scattered from a sample, e.g. Raman-scattered light, to produce a spectrum of the sample, includes a cylindrical cell for holding the sample that is transparent and coated on either its inside surface or outside surface with a reflective coating, e.g. aluminum. The reflective coating has an opening for aligning with an aperture in a spectrometer for receiving the sample-scattered light. Light from a source such as a laser illuminates the sample to produce a scattered light having a first part received directly at the opening and a second part reflected by the reflective coating one or more times prior to arrival at the opening, thereby adding to the total scattered light entering the aperture of the spectrometer to improve its collection efficiency.
Abstract:
A spectral colorimetric apparatus for detecting a color of an image of a subject, including: an illumination optical system illuminating the subject on a detection surface; a spectral optical system including a spectral element spectrally separating the beam diffused by the subject and a light receiving element array detecting a spectral intensity distribution; and a guiding optical system for guiding a beam diffused by the subject, wherein: the detection surface is parallel to a spectral plane including a principal ray of a beam entering the spectral optical system and a principal ray of a beam spectrally separated; the principal ray of the beam enters the spectral optical system within the spectral plane obliquely to a line joining a center of the light receiving element array with a surface vertex of the spectral element; and a light receiving surface of the light receiving element array is orthogonal to the spectral plane.
Abstract:
The present disclosure provides systems and methods for detecting the presence of blood. Specific applications may include hunting, during which it may be necessary to track a wounded, bleeding animal. According to one embodiment, a device transmits light at one or more wavelengths to irradiate a region potentially containing blood. Hemoglobin in the blood absorbs or reflects more of the transmitted light than other matter in the region. A detector detects the light reflected from the region and determines if blood is present in the region using spectral analysis.
Abstract:
A light fixture, using one or more solid state light emitting elements utilizes a diffusely reflect chamber to provide a virtual source of uniform output light, at an aperture or at a downstream optical processing element of the system. Systems disclosed herein also include a detector, which detects electromagnetic energy from the area intended to be illuminated by the system, of a wavelength absent from a spectrum of the combined light system output. A system controller is responsive to the signal from the detector. The controller typically may control one or more aspects of operation of the solid state light emitter(s), such as system ON-OFF state or system output intensity or color. Examples are also discussed that use the detection signal for other purposes, e.g. to capture data that may be carried on electromagnetic energy of the wavelength sensed by the detector.