Abstract:
Remote absorption spectroscopy uses coded electromagnetic transmission directed through a medium under investigation to one or more remote receivers. The coded transmission includes at least one wavelength coincident with an absorption band of interest and one wavelength in an off-line band and a predefined relationship between spectral components in and outside the absorption band is controlled. The relationship between spectral components may be evaluated at the receiver to determine whether deviation thereof from the controlled relationship at the transmitter exists at the receiver. The deviation of the received optical signal from the prescribed relationship is processed to indicate the absorption of the radiation in the absorption band.
Abstract:
The present invention includes: an optical fiber being provided either of between a light source and a measurement cell and between the measurement cell and a light detection part; and light path switching means adapted to achieve switching between a measurement cell passage state in which a light path formed by light transmission means passes through the measurement cell and a measurement cell non-passage state in which the light path formed by the light transmission means passes through a region different from the measurement cell, wherein calibration processing for a first calibration with a long calibration cycle is performed in the measurement cell passage state, and calibration processing for a second calibration with a short calibration cycle is performed in the measurement cell non-passage state.
Abstract:
The invention relates to an apparatus and method for optically analyzing samples contained in sample sites of a sample holder by means of fluorescence. The apparatus comprises a first light source comprising a plurality of individual light sources having narrow wavelength bands, means for further limiting wavelength bands of the light emitted by the individual light sources, means for guiding the reduced-wavelength light to the sample sites of the sample holder, and a detector for detecting light from the sample sites. According to the invention said means for further reducing the wavelength bands emitted by the individual light sources comprise a wavelength-tunable single monochromator. The invention allows manufacturing of a microplate reader having the capability for fluorescence measurements at a continuous wavelength range, while maintaining the cost of the device at a reasonable level.
Abstract:
This specification describes various embodiments that relate to methods for providing a wideband colorimeter that can include more accurate outputs. In one embodiment, a narrowband instrument, such as a spectrometer or spectrograph, can be used for calibration of a wideband colorimeter, so that more accurate outputs can be provided. In one embodiment, an optical test equipment, which consists of both a wideband colorimeter and a narrowband spectrograph, can be used for providing a more accurately calibrated wideband colorimeter. As an example, a spectra-camera, which is a hybrid system consisting of both a wideband colorimeter and a narrowband spectrograph, can be used for simultaneous testing by both the wideband colorimeter and the narrowband spectrograph. By doing simultaneous testing, accurate calibration of the wideband colorimeter can be achieved. This specification further describes a mathematical model to characterize a wideband three channel colorimeter with a narrowband multiple channel spectrometer.
Abstract:
A method of adjusting a spectroscopic imaging device is provided with which a relative arrangement relationship among components can be easily adjusted in the spectroscopic imaging device. A spectroscopic imaging device 30 includes a collimating lens 32, a diffraction grating 33, a condensing lens 34, an array light receiving unit 35, and adjustment means for adjusting a relative arrangement relationship among these components. An etalon filter is disposed on an optical path of light inputted to the collimating lens 32 and the relative arrangement relationship among the components is adjusted so that the focal point of light of each wavelength condensed by the condensing lens 34 is positioned on a predetermined line of the array light receiving unit 35.
Abstract:
A spectroscopic image capturing apparatus including a light source section and an imaging section, wherein the light source section includes a light source portion, a first lens group, and a first polarizer, and the imaging section includes a second polarizer, a second lens group, an optical filter, and an imaging unit.
Abstract:
Wavelength information indicating a correspondence relationship between a plurality of light receiving elements of a light receiving unit and wavelengths of pieces of lights is stored. First and second intensity distributions of the light related to first and second dispersion images are acquired based on a signal outputted from each of the light receiving elements when a monochromatic light is passed through a opening of a light shielding body and first and second dispersion images related to primary and secondary diffracted light are formed on the light receiving unit. An estimated intensity distribution of the light related to the second dispersion image is calculated from the first intensity distribution according to a predetermined relational expression. A change amount related to the wavelength information is calculated based on the estimated intensity distribution and the second intensity distribution. The wavelength information is corrected according to the change amount.
Abstract:
The present invention includes: an optical fiber being provided either of between a light source and a measurement cell and between the measurement cell and a light detection part; and light path switching means adapted to achieve switching between a measurement cell passage state in which a light path formed by light transmission means passes through the measurement cell and a measurement cell non-passage state in which the light path formed by the light transmission means passes through a region different from the measurement cell, wherein calibration processing for a first calibration with a long calibration cycle is performed in the measurement cell passage state, and calibration processing for a second calibration with a short calibration cycle is performed in the measurement cell non-passage state.
Abstract:
Various systems and methods of monitoring laser safety by sensing contact of the system with a sample are provided. The system includes a focusing element for focusing an incident light from a laser light source onto a sample, an optical element having a collection zone for collecting a signal from the sample, a reflected light sensor for sensing a reflected light from the sample, wherein the reflected light sensor is located outside the collection zone of the optical element and on an inner surface of a housing of the system, an electrical circuit operably connected to the reflected light sensor and the laser light source and configured to control power to the laser light source in accordance with the reflected light sensed by the reflected light sensor and a spectral analyzer for processing the signal. Methods and other systems are also described and illustrated.
Abstract:
A fiber-delivered probe suitable for CARS imaging of thick tissues is practical. The disclosed design is based on two advances. First, a major problem in CARS probe design is the presence of a very strong anti-Stokes component in silica delivery fibers generated through a FWM process. Without proper spectral filtering, this component affects the CARS image from the tissue sample. The illustrated embodiments of the invention efficiently suppress this spurious anti-Stokes component through the use of a separate fiber for excitation delivery and for signal detection, which allows the incorporation of dichroic optics for anti-Stokes rejection. Second, the detection of backscattered CARS radiation from the sample is optimized by using a large core multi mode fiber in the detection channel. This scheme produces high quality CARS images free of detector aperture effects. Miniaturization of this fiber-delivered probe results in a practical handheld probe for clinical CARS imaging.