Abstract:
Herein are disclosed a pressure-sensitive adhesive layer on a substrate, the adhesive layer containing stripes of first and second pressure-sensitive adhesives. The surface of the adhesive layer that faces the substrate is surface-enriched with the first pressure-sensitive adhesive. Methods of making are disclosed.
Abstract:
Various embodiments of the present disclosure pertain to methods of making carbon nanotube-coated substrates by dissolving carbon nanotubes in a solvent to form a carbon nanotube solution; and coating a surface of a substrate with the carbon nanotube solution to form one or more carbon nanotube layers on the surface of the substrate. The carbon nanotube solution may include a superacid solvent. A cable made out of the carbon nanotube-coated substrates may include one or more internal insulating layers that surround the surface of one or more internal conductors. Carbon nanotube solutions may be coated onto the one or more internal insulating layers to form one or more carbon nanotube layers. Additional embodiments of the present disclosure pertain to carbon nanotube-coated substrates formed by the methods of the present disclosure. The carbon nanotube-coated substrates may include one or more carbon nanotube layers derived from a carbon nanotube solution.
Abstract:
Manufacturing a multilayer tubular fibrous reinforced food casing having a tubular fibrous web located between an inside viscose regenerated cellulose layer and an outside viscose regenerated cellulose layer includes injecting a peeling agent in an outside viscose stream, injecting an adhesion promoter in an inside viscose stream, and impregnating the tubular fibrous web with viscose by applying the inside viscose stream to an inside surface of the fibrous web and applying the outside viscose stream to an outside surface of the fibrous web.
Abstract:
Aspects of the disclosure relate to methods for making large areas of high aspect ratio micro or nanostructured foil using existing extrusion coating equipment. A method is disclosed for producing a high aspect ratio micro- or nanostructured thermoplastic polymer foil, or a nanostructured thermoplastic polymer coating on a carrier foil, comprising at least one high aspect ratio nanostructured surface area. The method comprises applying a high aspect ratio nanostructured surface on an extrusion coating roller and maintaining the temperature of the roller below the solidification temperature of the thermoplastic material. A thermoplastic foil and a thermoplastic coating made by the method is also disclosed.
Abstract:
The disclosure relates to a method for finishing a wood board with an upper face and a lower face, having the following steps: a) applying a undercoat made of a liquid melamine resin onto the upper face, the melamine resin at least partly penetrating into the upper edge layer of the wood board, b) drying the undercoat into an undercoat layer, c) applying a base color onto the undercoat layer, d) drying the base color into a base color layer, e) applying a base color onto the base color layer in order to produce a decorative element, f) drying the decorative element into a decorative layer, g) applying a liquid melamine resin onto the dried decorative layer, h) drying the melamine resin into a melamine resin layer, and i) applying a liquid medium with a proportion of isocyanate
Abstract:
An apparatus, such as an extruding machine, configured to form a sheath, e.g. insulative layer, over an elongate member, e.g. a wire cable including an extruder to apply the material forming the sheath, a drive mechanism configured to move the elongate member through the extruder at a line speed, a thickness sensor to determine the thickness of the material, and a controller. The controller is programmed to determine a deviation between the actual material thickness a desired thickness, determine a correction factor value based on the deviation between the actual thickness and the desired thickness of the material applied, and adjust the line speed, via the drive mechanism, based on the line speed, an extruder feeder speed, the correction factor value and a material factor value that is based on rheological properties of the material. A method of operating such an extruding machine is also presented.
Abstract:
A composite sheet material and method for forming the same is provided that includes a substrate, a matrix, and a cover sheet. The substrate has a first face surface, a second face surface, and a plurality of edges, and includes a thermoplastic material. The matrix is attached to the substrate. The matrix includes a support component having a first melting point, and a thermoplastic component having a second melting point. The second melting point is less than the first melting point. The cover sheet imparts one or more surface characteristics to the composite sheet material during thermo-pressure formation of the composite sheet material.
Abstract:
A method (300) of additively manufacturing a composite part (102) is disclosed. The method (300) comprises pushing a continuous flexible line (106) through a delivery guide (112). The continuous flexible line (106) comprises a non-resin component (108) and a thermosetting-epoxy-resin component (110) that is partially cured. The method (300) also comprises depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along a print path (122). The method (300) further comprises maintaining the thermosetting-epoxy-resin component (110) of at least the continuous flexible line (106) being pushed through the delivery guide (112) below a threshold temperature prior to depositing the segment (120) of the continuous flexible line (106) along the print path (120).
Abstract:
A method (300) of additively manufacturing a composite part (102) comprises depositing a segment (120) of a continuous flexible line (106) along a print path (106). The continuous flexible line (106) comprises a non-resin component (108) and further comprises a photopolymer-resin component (110) that is uncured. The method (300) further comprises delivering a predetermined or actively determined amount of curing energy (118) at least to a portion (124) of the segment (120) of the continuous flexible line (106) at a controlled rate while advancing the continuous flexible line (106) toward the print path (122) and after the segment (120) of the continuous flexible line (106) is deposited along the print path (122) to at least partially cure at least the portion (124) of the segment (120) of the continuous flexible line (106).
Abstract:
A process for the manufacture of a reflective conductive film comprising: (i) a reflective polymeric substrate comprising a polymeric base layer and a polymeric binding layer, wherein the polymeric material of the base layer has a softening temperature TS-B, and the polymeric material of the binding layer has a softening temperature TS-HS; and (ii) a conductive layer comprising a plurality of nanowires, wherein said nanowires are bound by the polymeric matrix of the binding layer such that the nanowires are dispersed at least partially in the polymeric matrix of the binding layer, said process comprising the steps of providing a reflective polymeric substrate comprising a polymeric base layer and a polymeric binding layer; disposing said nanowires on the exposed surface of the binding layer; and heating the composite film to a temperature T1 wherein T1 is equal to or greater than TS−HS, and T1 is at least about 5° C. below TS-B.