Abstract:
Apparatus and techniques for detecting unknown chemical compounds in the field are provided. A Digital Signal Processor (DSP) includes a database of chemical signatures and corresponding chemicals. An air sample is analyzed in the field and chemical signature of any chemicals present is determined. This chemical signature is then correlated with the chemicals in the database. If a match is found, the operator is alerted to the fact. If no match is found, the operator is alerted to the fact that an unknown chemical compound is found but no correlation could be found. A corresponding system and method are provided.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of an object are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a data base.
Abstract:
The disclosure relates to a portable system having a fiber array spectral translator (“FAST”) for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
Abstract:
A forensic light source kit including a portable light source having a self contained battery and a white light source with a plurality of sliding filters for providing selected wavelength illumination, a plurality of barrier filter goggles, a tripod for mounting the light source, and a carrying case therefor.
Abstract:
Highly portable, handheld instrument which can be pointed at the produce to be checked. Light from a source within the instrument is directed onto the produce to induce fluorescent emission from the produce, and fluorescent emissions from the produce are monitored with a detector within the instrument to detect the presence of pesticide residue on the produce. The light from the source is filtered to selectively pass light of a wavelength which induces maximum fluorescent emission from the pesticide to be detected, and the emissions from the produce are filtered to selectively pass emissions having a spectral content characteristic of the pesticide to be detected.
Abstract:
The invention relates to a device for measuring light-activated fluorescence of at least one coating that contains a fluorescent material, and its use for measuring fluid materials which cause fluorescence-quenching in at least one of the fluorescent coatings. To activate the fluorescence, at least one first light wave-guide is directed onto at least one coating applied to a support and the fluorescent light is directed at a detector by means of at least one-second light wave-guide, in order to determine the intensity of the fluorescent light. The end faces of the different fluorescent light wave guides are then arranged to have overlapping entry and/or exit cones and/or be of a shape substantially identical to the at least one coating containing a fluorescent material, in such a way that an accurate measurement of the fluorescence intensity can be attained, and that the light source(s), light wave guides and the detector(s) are lodged in a measuring head.
Abstract:
A method for obtaining a target color measurement using an electronic image capturing device comprising the steps of: (1) determining one or more of a field correction array, level correction vectors, a color correction matrix, and a calibration correction and; (2) adjusting a target color measurement based upon one or more of a field correction array, level correction vector, a color correction matrix, and a calibration correction to obtain a corrected color target measurement.
Abstract:
A color luminance meter 1 is provided with a polychrometer 4 as a spectral optical system including a light receiving sensor array 43, a signal processing circuit 5 and an operation control unit 6. The operation control unit 6 carries out calculations to obtain characteristics of a measurement light based on a specified spectral responsitivity, using light reception signals and specified weighting coefficients. The spectral responsitivities of light receiving sensors constructing the light receiving sensor array 43 are selected such that B≧5 nm and A/B lies within a range of 1.5 to 4.0 when A, B denote the half power band width of the spectral responsitivities and a center wavelength interval of the spectral responsitivities. Accordingly, there can be provided a light measuring apparatus capable of maximally suppressing errors to highly precisely measure color luminance values and the like even in a measurement of a light lying in a narrow band such as a monochromatic light.
Abstract:
A hand-held colorimetric device (101) suitable for use by blind or colour-blind individuals to determine the colour of a surface-under-test (SUT), for example of a fabric, has an aperture (110) which, in use, is covered by the SUT (113) whose colour is to be determined. Six LEDs (115A, 115B, 116B, 117A and 117B) arranged in pairs (115A/115B, 116A/116 B, 117a/117B) emitting red/orange, green, and blue light illuminate the SUT and diffuse reflections therefrom containing red/orange, green, and blue spectrum sample values are used to determine the luminous reflectivity and chromaticity values for the colour of the SUT. The measured values are compared with colorimetric values of reference surfaces to determine the colour of the SUT. The colorimetric device may output the name of the colour aurally.
Abstract:
A colorimeter method and apparatus is described. The colorimeter includes a plurality of sensors/filter systems with non overlappng spectral responses, adequate for providing data capable of translation into standard coordinates system such as, CIE XYZ, CIE L* a* b*, or CIE Luv, as well as non-standard operable coordinate systems. The field of view of the colorimeter is chosen to closely track the response of the human eye using an optical path configured to select and limit the field of view in a manner that is insensitive to placement of the colorimeter on the source image. The optical path from the source image to the sensor is configured to select preferred light rays while rejecting undesirable light rays to maximize the signal/noise ratio. A rearward facing sensor channel is included to simultaneously measure ambient light impinging on the source image and feedback means to provide status and/or change of information.
Abstract translation:描述了色度计的方法和装置。 色度计包括具有非叠加光谱响应的多个传感器/滤波器系统,足以提供能够转换成诸如CIE XYZ,CIE L * a * b *或CIE Luv的标准坐标系统的数据, 标准可操作的坐标系。 选择色度计的视野,使用配置成以对色度计在源图像上的放置不敏感的方式选择和限制视场的光路来密切跟踪人眼的响应。 从源图像到传感器的光路被配置为选择优选的光线,同时排除不期望的光线以使信号/噪声比最大化。 包括向后的传感器通道以同时测量照射在源图像上的环境光和反馈装置以提供信息的状态和/或变化。