Abstract:
A low-EMI circuit which realizes a high mounting density by converting the potential fluctuation of a power supply layer with respect to a ground layer which occurs on switching an IC device etc., into Joule's heat in the substrate without using any parts as a countermeasure against the EMI. Its structure, a circuit board using it, and a method of manufacturing the circuit board are also disclosed. Parallel plate lines in which the Q-value of the stray capacitance between solid layers viewed from the power supply layer and ground layer is equivalently reduced and which are matchedly terminated by forming a structure in which a resistor (resistor layer) and another ground layer are provided in addition to the power supply layer and the ground layer on a multilayered circuit board. A closed shield structure is also disclosed.
Abstract:
An electronic circuit package includes a vertical package section (304, FIG. 3) electrically connected to a horizontal package section (306, FIG. 3). The vertical package section includes multiple conductive layers (512, 514, 516, FIG. 5) oriented in parallel with a vertical plane. A first set of bond pads (606, FIG. 6) on the vertical section's horizontal top surface (608, FIG. 6) can be connected to the bond pads (602, FIG. 6) of an integrated circuit (302, FIG. 3). A second set of bond pads (612, FIG. 6) on the vertical section's horizontal bottom surface (614, FIG. 6) can be connected to bond pads (616, FIG. 6) on the horizontal package section. The conductive layers of the vertical section perform a bond pad pitch conversion in a first direction, and conductive structures (906, 908, 910, FIG. 9) within the horizontal package section perform a bond pad pitch conversion in a second direction.
Abstract:
A modular light emitting diode (LED) mounting configuration is provided including a light source module having a plurality of pre-packaged LEDs arranged in a serial array. The module includes a heat conductive body portion adapted to conduct heat generated by the LEDs to an adjacent heat sink. A heat conductive adhesive tape connects the LED module to the mount surface. As a result, the LEDs are able to be operated with a higher current than normally allowed. Thus, brightness and performance of the LEDs is increased without decreasing the life expectancy of the LEDs. A plurality of such LED modules can be pre-wired together in a substantially continuous fashion and provided in a dispenser, such as a roll or box. Thus, to install a plurality of such LED modules, a worker simply pulls modules from the dispenser as needed, secures the appropriate number of modules in place, and connects the assembled modules to a power source.
Abstract:
A high frequency, low impedance network is integrated into the substrate level of a power module for the reduction of electromagnetic interference (“EMI”). In one embodiment, capacitance is electrically connected to at least one of the positive conducting layer in a substrate or the negative conducting layer in a substrate and a ground. Integrating a capacitive network of low stray inductance in a substrate of a power module allows relatively small, inexpensive capacitors to be used.
Abstract:
Apparatus and methods for achieving a desired value of electrical impedance between parallel planar conductors of an electrical power distribution structure by electrically coupling multiple bypass capacitors and corresponding electrical resistance elements in series between the planar conductors. The methods include bypass capacitor selection criteria and electrical resistance determination criteria based upon simulation results. An exemplary electrical power distribution structure produced by one of the methods includes a pair of parallel planar conductors separated by a dielectric layer, n discrete electrical capacitors, and n electrical resistance elements, where nnull2. Each of the n discrete electrical resistance elements is coupled in series with a corresponding one of the n discrete electrical capacitors between the planar conductors. The n capacitors have substantially the same capacitance C, mounted resistance Rm, mounted inductance Lm, and mounted resonant frequency fm-res. The mounted resistance Rm of each of the n capacitors includes an electrical resistance of the corresponding electrical resistance element. The electrical power distribution structure achieves an electrical impedance Z at the resonant frequency fm-res of the capacitors. The mounted resistance Rm of each of the n capacitors is substantially equal to (nnullZ). The mounted inductance Lm of each of the n capacitors is less than or equal to (0.2nullnnullnull0nullh), where null0 is the permeability of free space, and h is a distance between the planar conductors.
Abstract:
An electrical connector is constructed for ease of fixing a sheet metal solder plate (25) to the bottom surface portion (70) of the connector insulator frame (12), so the solder plate can be soldered to one or more traces on a circuit board to hold down the frame. The frame has downwardly extending pegs (33-35) and the solder plate has corresponding peg-receiving holes (28-30). The mount plate forms at least one tongue (50, 51) at each of its holes, each tongue projecting against one of the pegs to form an interference fit against the peg that prevents removable of the solder plate from the insulator pegs. Each peg has a vertical slot (38, 39) that receives a nose (50, 51) at the end of the tongue.
Abstract:
Apparatus and methods for achieving a desired value of electrical impedance between parallel planar conductors of an electrical power distribution structure by electrically coupling multiple bypass capacitors and corresponding electrical resistance elements in series between the planar conductors. The methods include bypass capacitor selection criteria and electrical resistance determination criteria based upon simulation results. An exemplary electrical power distribution structure produced by one of the methods includes a pair of parallel planar conductors separated by a dielectric layer, n discrete electrical capacitors, and n electrical resistance elements, where n≧2. Each of the n discrete electrical resistance elements is coupled in series with a corresponding one of the n discrete electrical capacitors between the planar conductors. The n capacitors have substantially the same capacitance C, mounted resistance Rm, mounted inductance Lm, and mounted resonant frequency fm-res. The mounted resistance Rm of each of the n capacitors includes an electrical resistance of the corresponding electrical resistance element. The electrical power distribution structure achieves an electrical impedance Z at the resonant frequency fm-res of the capacitors. The mounted resistance Rm of each of the n capacitors is substantially equal to (n·Z). The mounted inductance Lm of each of the n capacitors is less than or equal to (0.2·n·&mgr;0·h), where &mgr;0 is the permeability of free space, and h is a distance between the planar conductors.
Abstract:
A projection display device permits extension of a space for mounting an electronic component on a control circuit substrate. The projection display device includes a control circuit substrate on which a control circuit is mounted for controlling driving of each of apparatuses in the device according to the input operation signal from an external light receiving unit; and a signal transmission circuit comprising a light emitting element and a light receiving element and provided in a conduction passage on the circuit substrate. The control circuit substrate includes a first circuit substrate on which the control circuit is mounted, and a second circuit substrate provided opposite to the first circuit substrate, and to which the operation signal is input from the external light receiving unit. The light receiving element and the light emitting element are provided on the first circuit substrate and the second circuit substrate, respectively.
Abstract:
A method and apparatus for dissipating heat from an electrical component. The method includes providing a planar element including a first electrically and thermally conductive region and a second electrically and thermally conductive region, such that the first and second regions define a spacing therebetween, and wherein the planar element includes at least one mechanically stabilizing tie connected between the first and second regions across the spacing, directly connecting a first terminal of an electrical component to the first region, directly connecting a second terminal of the electrical component to the second regions, such that the electrical component bridges the spacing, and removing the at least one mechanically stabilizing tie from between the first and second regions.
Abstract:
An integrated circuit (IC) having a plurality of IC modules, each IC module having attachment surfaces to which elements of the IC are attached, and each IC module having interlocking edges adjacent to the attachment surface. The interlocking edges of adjacent IC modules are interlocked to form a structural connection between the IC modules. The interlocking edges are a plurality of teeth and recesses, which are arranged in rows. The teeth are securely received by a respective recess in an adjacent interlocking edge to create a structural connection between adjacent IC modules. In addition, the interlocking edges can be a ridge member or a ridge recess, where the ridge member or ridge recess is securely received by a respective ridge recess or ridge member of an adjacent IC module to create a structural connection between the IC modules. The interconnection edge can also be a combination of the ridge member, ridge recess, and/or the rows of teeth and recesses. The attachment surfaces of adjacent IC modules can be co-planar and non-planar, depending on the shape desired. The elements on the IC modules communicate using external pathways and/or internal pathways using conventional wire-bond techniques or using conductive layers within the IC module. The IC module is formed of conventional Si wafers. Using this configuration, an IC can be constructed that utilizes less real estate, fits in non-planar spaces in a housing, and has improved speed due to reduced pathway lengths.