Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a first substrate including a first face and a second face opposite the first face. A second substrate is bonded to the first face of the first substrate such that the second face of the first substrate faces away from the second substrate. One or more recesses are arranged in the second face of the first substrate and are configured to compensate for thermal expansion or thermal contraction.
Abstract:
An online trimming device and method for a micro-shell resonator gyroscope is provided. A micro-shell resonator gyroscope fixing fixture and a mode test circuit in the device are placed in a vacuum test cavity provided with a circuit interface. The mode test circuit and a host computer are connected through a circuit interface on the vacuum test cavity. The gyroscope fixing fixture is provided with a signal interface, and the electrodes on the gyroscope substrate are connected to the signal interface. The signal interface on the fixture is connected to the mode test circuit. The laser etching module is located at the top of the device. An opening is formed in the gyroscope fixing fixture. The vacuum test cavity is provided with a transparent trimming window. The laser acts on the edge of the resonant structure of the gyroscope through the trimming window and the through hole of the fixture.
Abstract:
A DNA sequencing device and methods of making. The device includes a pair of electrodes having a spacing of no greater than about 2 nm, the electrodes being exposed within a nanopore to measure a DNA strand passing through the nanopore. The device can be made by depositing a conductive layer over a sacrificial channel and then removing the sacrificial channel to form the electrode gap.
Abstract:
A micromechanical device that includes a first substrate, at least one first cavity, and a sealed inlet to the first cavity, the inlet extending through the first substrate. The inlet includes a laser-drilled first subsection and a plasma-etched second subsection, the plasma-etched second subsection having an opening to the first cavity, and the inlet in the first subsection being sealed by a molten seal made of molten mass of at least the first substrate. A combined laser drilling and plasma etching method for manufacturing micromechanical devices is also described.
Abstract:
A method is provided for fabricating a thin-film semiconductor substrate by forming a porous semiconductor layer conformally on a reusable semiconductor template and then forming a thin-film semiconductor substrate conformally on the porous semiconductor layer. An inner trench having a depth less than the thickness of the thin-film semiconductor substrate is formed on the thin-film semiconductor substrate. An outer trench providing access to the porous semiconductor layer is formed on the thin-film semiconductor substrate and is positioned between the inner trench and the edge of the thin-film semiconductor substrate. The thin-film semiconductor substrate is then released from the reusable semiconductor template.
Abstract:
A method of manufacturing a plurality of through-holes in a layer of first material by subjecting part of the layer of said first material to ion beam milling.For batch-wise production, the method comprises after a step of providing the layer of first material and before the step of ion beam milling, providing a second layer of a second material on the layer of first material, providing the second layer of the second material with a plurality of holes, the holes being provided at central locations of pits in the first layer, and subjecting the second layer of the second material to said step of ion beam milling at an angle using said second layer of the second material as a shadow mask.
Abstract:
The present disclosure provides a method of fabricating a diamond membrane. The method comprises providing a substrate and a support structure. The substrate comprises a diamond material having a first surface and the substrate further comprises a sub-surface layer that is positioned below the first surface and has a crystallographic structure that is different to that of the diamond material. The sub-surface layer is positioned to divide the diamond material into first and second regions wherein the first region is positioned between the first surface and the sub-surface layer. The support structure also comprises a diamond material and is connected to, and covers a portion of, the first surface of the substrate. The method further comprises selectively removing the second region of the diamond material from the substrate by etching away at least a portion of the sub-surface layer of the substrate.
Abstract:
Methods, devices and systems for patterning of substrates using charged particle beams without photomasks and without a resist layer. Material can be removed from a substrate, as directed by a design layout database, localized to positions targeted by multiple, matched charged particle beams. Reducing the number of process steps, and eliminating lithography steps, in localized material removal has the dual benefit of reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Furthermore, highly localized, precision material removal allows for controlled variation of removal rate and enables creation of 3D structures or profiles. Local gas injectors and detectors, and local photon injectors and detectors, are local to corresponding ones of the columns, and can be used to facilitate rapid, accurate, targeted substrate processing.
Abstract:
A MEMS chip having at least two chip components bonded together by means of an adhesive layer that is applied to at least one of two mating bonding surfaces of the two components, wherein a pattern of finely distributed micro-cavities is formed in at least one of the two mating bonding surfaces, said micro-cavities being arranged to accommodate a major part of the adhesive.
Abstract:
Methods, devices and systems for patterning of substrates using charged particle beams without photomasks and without a resist layer. Material can be deposited onto a substrate, as directed by a design layout database, localized to positions targeted by multiple, matched charged particle beam columns. Reducing the number of process steps, and eliminating lithography steps, in localized material addition has the dual benefit of reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Furthermore, highly localized, precision material deposition allows for controlled variation of deposition rate and enables creation of 3D structures. Local gas injectors and detectors, and local photon injectors and detectors, are local to corresponding ones of the columns, and can be used to facilitate rapid, accurate, targeted, highly configurable substrate processing, advantageously using large arrays of said beam columns.