Abstract:
The invention provides methods and devices for generating optical pulses in one or more waveguides using a spatially scanning light source. A detection system, methods of use thereof and kits for detecting a biologically active analyte molecule are also provided. The system includes a scanning light source, a substrate comprising a plurality of waveguides and a plurality of optical sensing sites in optical communication with one or more waveguide of the substrate, a detector that is coupled to and in optical communication with the substrate, and means for spatially translating a light beam emitted from said scanning light source such that the light beam is coupled to and in optical communication with the waveguides of the substrate at some point along its scanning path. The use of a scanning light source allows the coupling of light into the waveguides of the substrate in a simple and cost-effective manner.
Abstract:
A beam detector including a light source, a receiver, and a target, acting in cooperation to detect particles in a monitored area. The target reflects incident light, resulting in reflected light being returned to receiver. The receiver is capable of recording and reporting light intensity at a plurality of points across its field of view. In the preferred form the detector emits a first light beam in a first wavelength band; a second light beam in a second wavelength band; and a third light beam in a third wavelength band, wherein the first and second wavelengths bands are substantially equal and are different to the third wavelength band.
Abstract:
An optical absorption gas sensor for detecting an analyte gas comprises a gas sample receiving chamber, at least one light emitting diode (LED) and a photodiode or other photosensor. A plurality of light pulses are generated by passing pulses of current through the at least one LED. The current through the at least one LED is measured a plurality of times during each pulse and taken into account when generating a compensated output signal. The transfer ratio between LED current and photodiode output signal is calculated a plurality of times during each pulse. An ADC measures the LED and photodiode currents alternately. The LED pulses are generated by inductor discharge flyback and the period of time for which current is supplied to the inductor prior to each pulse is selected so that the photodiode output current is at an optimal region within the input range of the ADC. At least the temperature of the at least one LED is measured and taken into account when generating the compensated output signal. Thus, rather than providing especially careful control of the LED pulses, the pulses are measured, enabling a simpler, lower power circuit which is tolerant of variations in temperature to be provided.
Abstract:
Systems and methods for measuring a target in a sample, the target being capable of generating an emitted light in response to an excitation light. In an example system, an excitation light source generates the excitation light along an excitation optical path. An attenuation filter arrangement selectively adds an attenuation filter to the excitation optical path. The attenuation filter attenuates the excitation light by a corresponding attenuation factor. The excitation light exits the attenuation filter arrangement along the excitation optical path to illuminate the sample. A light energy detector receives the emitted light generated in response to the excitation light, and outputs a measured signal level corresponding to an emitted light level. If the light energy detector indicates an overflow, signal measurement is repeated with attenuation filters of increasing attenuation factors until the measured signal level does not overflow.
Abstract:
A flashlamp control system is provided with a capacitor that is statically electrically connected to the high voltage power supply, and a current sensing component is then electrically connected to the static capacitor and digital control electronics to monitor the charge current and/or the discharge current to static capacitor. A dynamically switchable capacitor electrically may also be connected to the high voltage power supply and digital control electronics for isolating the dynamically switchable capacitor from the high voltage power supply based on the monitored charge current and/or discharge current. One or more homogenizing element, comprise of an air gap, diffusing homogenizing element, imaging element, non-imaging element or light pipe homogenizing element, may be disposed in the light path proximate to the flashlamp, such as a multichannel distributor if present, to decrease the coefficient of variation of the optical signal, either temporally and spectrally, or both.
Abstract:
Electronic devices may include time-of-flight image pixels. A time-of-flight image pixel may include first and second charge storage regions coupled to a photosensor and a transfer transistor with a gate terminal coupled to the first storage region. An electronic device may further include a light pulse emitter configured to emit pulses of light to be reflected by objects in a scene. Reflected portions of the emitted pulses of light may be captured along with background light by the time-of-flight image pixels. Time-of-flight image pixels may be configured sense the time-of-flight of the reflected portions of the emitted pulses. The electronic device may include processing circuitry configured to use the sensed time-of-flight of the reflected portions to generate depth images of a scene. Depth images may include depth-image pixel values that contain information corresponding to the distance of the objects in the scene from the electronic device.
Abstract:
A method is proposed for ascertaining the quality and/or the composition of milk, in particular during a milking operation, in which the fill level of the milk in a chamber is determined. After the fill level of the milk in the chamber has been determined, the milk is irradiated using at least one radiation of a predefined wavelength. The intensity of the reflected radiation is measured. The fill level and the intensity of the reflected radiation represent a value pair. Characteristic values are stored in a memory. A characteristic value is assigned to the ascertained value pair. A statement about the quality and/or the composition of the milk can be made from the characteristic value thus ascertained.
Abstract:
A particle detection system including; at least one light source adapted to illuminate a volume being monitored at at least two wavelengths; a receiver having a field of view and being adapted to receive light from at least one light source after said light has traversed the volume being monitored and being adapted to generate signals indicative of the intensity of light received at regions within the field of view of the receiver; a processor associated with the receiver adapted to process the signals generated by the receiver to correlate light received at at least two wavelengths in corresponding regions within the field of view of the receiver and generate an output indicative of the relative level of light received at the two wavelengths.
Abstract:
A device for measuring calories of food items includes a food item holding unit on which an inspection-target food item including a plurality of food materials is placed, a light source for radiating near-infrared rays at a specific wavelength region to the food item, and a light reception unit that receives light emitted from the light source and then reflected from the food item. The light receiving device receives light reflected from the food item when the near-infrared rays at the specific wavelength are radiated to the food item. A control unit calculates calories of the food item in accordance with measurement values of absorbances of the near-infrared rays at the specific wavelength region which are received by the light reception unit.
Abstract:
The invention is in the field of in vitro diagnostics and relates to a method for ascertaining a transmission value for a light signal that is pulsed at a frequency through a specimen in an automatic analysis appliance. It also relates to a transmission measurement apparatus for an automatic analysis appliance, comprising a light source that is pulsed at a frequency and a photodetector having a downstream A/D converter.