Abstract:
An electron gun supporting member includes an insulating supporting member configured such that its one end is connected to a predetermined member having a ground potential and other end is connected to a high-voltage electrode to which a high potential being a negative high potential for emitting electrons from an electron source is applied, so as to support the high-voltage electrode, and a metal film formed in a partial region, which contacts neither the high-voltage electrode nor the predetermined member, on the outer surface of the insulating supporting member.
Abstract:
The present invention provides a composite charged particle beam device which is provided with two or more charged particle beam columns and enables high-resolution observation while a sample is placed at the position of a cross point. The present invention has the following configuration. A composite charged particle beam device is provided with a plurality of charged particle beam columns (101a, 102a), and is characterized in that a sample (103) is disposed at the position of an intersection point (171) where the optical axes of the plurality of columns intersect, a component (408a, 408b) that forms the tip of an objective lens of the charged particle beam column (102a) is detachable, and by replacing the component (408a, 408b), the distance between the intersection point (171) and the tip of the charge particle beam column can be changed.
Abstract:
The disclosure relates to a method of operating a gas field ion beam system in which the gas field ion beam system comprises an external housing, an internal housing, arranged within the external housing, an electrically conductive tip arranged within the internal housing, a gas supply for supplying one or more gases to the internal housing, the gas supply having a tube terminating within the internal housing, and an extractor electrode having a hole to permit ions generated in the neighborhood of the tip to pass through the hole into the external housing. The method comprises the step of regularly heating the external housing, the internal housing, the electrically conductive tip, the tube and the extractor electrode to a temperature of above 100° C.
Abstract:
The present disclosure relates to a gas field ion source comprising a housing, an electrically conductive tip arranged within the housing, a gas supply for supplying one or more gases to the housing, wherein the one or more gases comprise neon or a noble gas with atoms having a mass larger than neon, and an extractor electrode having a hole to permit ions generated in the neighborhood of the tip to pass through the hole. A surface of the extractor electrode facing the tip can be made of a material having a negative secondary ion sputter rate of less than 10−5 per incident neon ion.
Abstract:
An electron gun supporting member includes an insulating supporting member configured such that its one end is connected to a predetermined member having a ground potential and other end is connected to a high-voltage electrode to which a high potential being a negative high potential for emitting electrons from an electron source is applied, so as to support the high-voltage electrode, and a metal film formed in a partial region, which contacts neither the high-voltage electrode nor the predetermined member, on the outer surface of the insulating supporting member.
Abstract:
The present disclosure relates to a gas field ion source comprising a housing, an electrically conductive tip arranged within the housing, a gas supply for supplying one or more gases to the housing, wherein the one or more gases comprise neon or a noble gas with atoms having a mass larger than neon, and an extractor electrode having a hole to permit ions generated in the neighborhood of the tip to pass through the hole. A surface of the extractor electrode facing the tip can be made of a material having a negative secondary ion sputter rate of less than 10−5 per incident neon ion.
Abstract:
In accordance with an embodiment, an analysis apparatus includes a secondary electron optical system, at least one detector, and a composition analysis unit. The secondary electron optical system includes a charged particle beam source and a lens. The charged particle beam source generates a charged particle beam and irradiates a sample with it. The lens controls a focal position and a trajectory of the charged particle beam using an electric field or a magnetic field. The detector detects a characteristic X-ray from the sample. The composition analysis unit analyzes a composition of a material constituting the sample from the detected characteristic X-ray. Each detector is arranged in such a manner that at least part of a detection surface thereof is placed on the same plane as an exit surface of the secondary electron optical system, or placed on the charged particle beam side of the same plane.
Abstract:
An insulation structure of high voltage electrodes includes an insulator having an exposed surface and a conductor portion, which includes a joint region in contact with the insulator, and a heat-resistant portion provided, along at least part of an edge of the joint region, in such a manner as to be adjacent to the exposed surface of the insulator. The heat-resistant portion is formed of an electrically conductive material whose melting point is higher than that of the conductor portion. The heat-resistant portion may be so provided as to have a gap between the insulator and the exposed surface.
Abstract:
Provided is an electrostatic lens array, including multiple substrates arranged with intervals, each of the multiple substrates having an aperture for passing a charged particle beam, in which: in a travelling direction of the charged particle beam, a peripheral contour line formed by any one of surfaces of the multiple substrates other than an upper surface of a most upstream substrate and a lower surface of a most downstream substrate has a protruding portion protruding from a peripheral contour line of one of the upper surface of the most upstream substrate and the lower surface of the most downstream substrate; and a position of the protruding portion is defined by a position regulating member, whereby parallelism is adjustable so that a surface including the protruding portion is parallel to a surface to be irradiated with the charged particle beam after passing through the aperture.
Abstract:
A system and method are disclosed for controlling an ion beam. A deceleration lens is disclosed for use in an ion implanter. The lens may include a suppression electrode, first and second focus electrodes, and first and second shields. The shields may be positioned between upper and lower portions of the suppression electrode. The first and second shields are positioned between the first focus electrode and an end station of the ion implanter. Thus positioned, the first and second shields protect support surfaces of said first and second focus electrodes from deposition of back-streaming particles generated from said ion beam. In some embodiments, the first and second focus electrodes may be adjustable to enable the electrode surfaces to be adjusted with respect to a direction of the ion beam. By adjusting the angle of the focus electrodes, parallelism of the ion beam can be controlled. Other embodiments are described and claimed.