Abstract:
The presently disclosed ion sources include one or more electromagnets for changing the distribution of plasma within a discharge space of an ion source. At least one of the electromagnets is oriented about an outer periphery of a tubular sidewall of the ion source and changes a distribution of the plasma in a peripheral region of the discharge space.
Abstract:
A charged particle beam apparatus including a charged particle emission gun with which cleaning of a tip is possible without stopping the operation of the charged particle emission gun for a long time and without heating the tip. The charged particle emission gun includes a cleaning photo-irradiation apparatus that generates ultraviolet light or infrared light to irradiate a tip, and an optical fiber for guiding the ultraviolet light or the infrared light toward the tip. The cleaning photo-irradiation apparatus generates ultraviolet light or an infrared light with a predetermined wavelength and intensity to desorb a molecule adsorbed on the tip through photon stimulated desorption, or to desorb a molecule adsorbed on the tip through photon stimulated desorption and ionize the desorbed molecule.
Abstract:
An accelerator assembly includes an acceleration channel that passes in a straight line through a plurality of accelerator cells. Each cell includes an acceleration region and a drift region. The drift region includes a high voltage plate and a grid electrode, where the grid electrode is disposed between the high voltage plate and the channel. In each cell, a large DC voltage is present on the high voltage plate. A voltage on the grid electrode is controlled such that at a first time an ion in the channel is attracted toward the high voltage plate, and such that at a second time the ion is shielded and is not attracted toward the high voltage plate. In one specific example, the assembly is part of a Direct Write On Wafer (DWOW) printing system that can direct write an image onto a 300 mm diameter wafer in one minute.
Abstract:
Provided is a charged particle emission gun with which cleaning of a tip is possible without stopping the operation of the charged particle emission gun for a long time and without heating the tip. The charged particle emission gun includes a cleaning photo-irradiation apparatus that generates ultraviolet light or infrared light to irradiate a tip, and an optical fiber for guiding the ultraviolet light or the infrared light toward the tip. The cleaning photo-irradiation apparatus generates ultraviolet light or an infrared light with a predetermined wavelength and intensity to desorb a molecule adsorbed on the tip through photon stimulated desorption, or to desorb a molecule adsorbed on the tip through photon stimulated desorption and ionize the desorbed molecule.
Abstract:
An assembly includes a cold ion source and a chip. The cold ion source is fixed to the chip so that ions from the ion source can enter an acceleration channel in the chip. In one specific example, the ion source includes an ion exchange membrane that produces cold ions in that the ions as produced have an energy of less than 30 eV. The chip includes a substrate (such as a semiconductor substrate or a glass substrate) and a dielectric layer disposed on substrate, where the acceleration channel is a channel formed into the dielectric layer. In one specific example, the assembly is part of a Direct Write On Wafer (DWOW) printing system. The DWOW printing system is useful in semiconductor processing in that it can direct write an image onto a 300 mm diameter wafer in one minute.
Abstract:
In an accelerating tube which uses a conductive insulator, there is a possibility that the dopant concentration on a surface of the conductive insulator becomes non-uniform so that the surface resistance of the conductive insulator becomes non-uniform. Accordingly, a circumferential groove is formed on the inner surface of the conductive insulator accelerating tube in plural stages, and metal is metalized along inner portions of the grooves. When the resistance of a specific portion on the surface of the accelerating tube differs from the resistance of an area around the specific portion, the potential of the metalized region on the inner surface of the accelerating tube becomes a fixed value and hence, the potential distribution on the inner surface of the accelerating tube in the vertical direction can be maintained substantially equal without regard to the circumferential direction.
Abstract:
Ion sources or generators for focused ion beam emission (FIB) applications emitting ion beams into vacuum or a gas are used in industry and research for the characterization and processing of surfaces. With appropriate focusing, such ion beams can be confined to diameters of a few nanometers. The tip of technical FIB generators for producing such focused beams consists of a liquid metal, gallium in general, which tends to fluctuate during operation. This has a negative influence on the stability of the emission current and the focus definition. It is also possible to generate an FIB with solid tips, consisting of a solid metal, but such tips deteriorate rapidly during operation due to erosion of material from the tip apex. The present invention concerns a novel FIB source generating free space ion beams from a solid source but does not exhibit the above-mentioned erosion effect at the apex. The novel FIB generator consists of a combination of two essentially unitary bodies, a solid electrolyte body with a sharp tip and a solid ion reservoir body, both bodies having close contact with each other. The reservoir is made of or contains the same material, in general a metal as the mobile ions. Loss of ions from the electrolyte body due to emission is compensated by an inflow of ions from the reservoir body during operation. This practically preserves electro-neutrality which is a precondition for continuous mode operation. Erosion of the tip of the electrolyte body does not occur since the counter ions form a solid matrix and the emitted ions are replenished during operation.
Abstract:
An ionic liquid ion source can include a microfabricated body including a base and a tip. The body can be formed of a porous material compatible with at least one of an ionic liquid or room-temperature molten salt. The body can have a pore size gradient that decreases from the base of the body to the tip of the body, such that the at least one of an ionic liquid or room-temperature molten salt is capable of being transported through capillarity from the base to the tip.
Abstract:
An ionic liquid ion source can include a microfabricated body including a base and a tip. The body can be formed of a porous material compatible with at least one of an ionic liquid or room-temperature molten salt. The body can have a pore size gradient that decreases from the base of the body to the tip of the body, such that the at least one of an ionic liquid or room-temperature molten salt is capable of being transported through capillarity from the base to the tip.
Abstract:
Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.