Abstract:
The present disclosure relates to a telecommunications jack including a housing having a port for receiving a plug. The jack also includes a plurality of contact springs adapted to make electrical contact with the plug when the plug is inserted into the port of the housing, and a plurality of wire termination contacts for terminating wires to the jack. The jack further includes a circuit board that electrically connects the contact springs to the wire termination contacts. The circuit board includes a multi-zone crosstalk compensation arrangement for reducing crosstalk at the jack.
Abstract:
An adaptor board may include a multi-layer circuit board having at least three layers, namely a first board layer, a second board layer, and a third board layer. A first plurality of cable contacts may be provided at the first board layer, and a second plurality of cable contacts may be provided at the third board layer.
Abstract:
A hard mask is disposed over a base material, and an I-shaped first opening is disposed in the hard mask. The first opening includes two parallel portions and a connecting portion interconnecting the two parallel portions. Spacers are formed on sidewalls of the first opening. The spacers fill an entirety of the connecting portion, wherein a center portion of each of the two parallel portions is unfilled by the spacers. The hard mask is etched to remove a portion of the hard mask and to form a second opening, wherein the second opening is between the two parallel portions of the first opening. The second opening is spaced apart from the two parallel portions of the first opening by the spacers. The first opening and the second opening are then extended down into the base material.
Abstract:
In an integrated circuit package that houses radio-frequency (RF) circuits or components using wafer-level packaging (WLP), an RF-signal transmission structure includes a signal-carrying conductive line positioned between grounded conductive lines to avoid undesirable coupling between the signal-carrying conductive line and other RF circuits or components in the same package.
Abstract:
A microcomputer provided on a rectangular semiconductor board has memory interface circuits. The memory interface circuits are separately disposed in such positions as to extend along the peripheries of the semiconductor board on both sides from one corner as a reference position. In this case, limitations to size reduction imposed on the semiconductor board can be reduced compared with a semiconductor board having memory interface circuits only on one side. Respective partial circuits on each of the separated memory interface circuits have equal data units associated with data and data strobe signals. Thus, the microcomputer has simplified line design on a mother board and on a module board.
Abstract:
A high-frequency signal line includes a dielectric base with a first line portion and a second line portion each extending along a predetermined straight line parallel or substantially parallel to a predetermined direction, and a third line portion mutually connecting first side ends of the first line portion and the second line portion in the predetermined direction, a signal line, a first ground conductor located on the first side in the layer stacking direction of the signal line, a second ground conductor located on a second side in the layer stacking direction of the signal line, and one or more interlayer connection conductors connecting the first ground conductor and the second ground conductor. In the third line portion, the interlayer connection conductor is provided on the second side in the predetermined direction of the signal line when viewed from the layer stacking direction.
Abstract:
Provided are a nano-scale LED assembly and a method for manufacturing the same. First, a nano-scale LED device that is independently manufactured may be aligned and connected to two electrodes different from each other to solve a limitation in which a nano-scale LED device having a nano unit is coupled to two electrodes different from each other in a stand-up state. Also, since the LED device and the electrodes are disposed on the same plane, light extraction efficiency of the LED device may be improved. Furthermore, the number of nano-scale LED devices may be adjusted. Second, since the nano-scale LED device does not stand up to be three-dimensionally coupled to upper and lower electrodes, but lies to be coupled to two electrodes different from each other on the same plane, the light extraction efficiency may be very improved. Also, since a separate layer is formed on a surface of the LED device to prevent the LED device and the electrode from being electrically short-circuited, defects of the LED electrode assembly may be minimized. Also, in preparation for the occurrence of the very rare defects of the LED device, the plurality of LED devices may be connected to the electrode to maintain the original function of the nano-scale LED electrode assembly.
Abstract:
Electrically-conductive articles are prepared to have electrically-conductive metallic grids and electrically-conductive metallic connectors (BUS lines) on one or both supporting sides of a transparent substrate. The electrically-conductive metallic connectors are designed with one metallic main wire that comprises two or more adjacent metallic micro-wires in bundled patterns. These bundled patterns and metallic micro-wires are designed with specific dimensions and configurations to provide optimal fidelity (or correspondence) to the mask image used to provide such patterns. The electrically-conductive articles can be prepared using various manufacturing technologies and can be used as parts of various electronic devices including touch screen devices. The electrically-conductive metallic grids and connectors can be prepared and designed using various technologies that are amenable to obtaining very fine lines in predetermined patterns.
Abstract:
Provided are structures for connecting trace lines of printed circuit boards and optical transceiver modules with the same. The module may include an optical transmitter/receiver part, a signal processing unit, a flexible PCB, and a rigid PCB. The flexible PCB may include a first signal line, and the rigid PCB may include a second signal line. The flexible PCB and the rigid PCB may be overlapped with each other. The first signal line and the second signal line may not be overlapped with each other and be electrically connected to each other by a junction soldering structure. It is possible to transmit high quality and high frequency signals through the first and second signal lines.
Abstract:
A method and apparatus for matching the lengths of traces of differential signal pairs. The method includes determining that a first trace is longer than a second trace and modifying the second trace so that the length is substantially equal to the length of the first trace. In some implementations, the second trace can be modified by replacing one or more sections of the trace with two line segments that are substantially equal in length and meet at a vertex that is less than 180 degrees.