Abstract:
An embedded chip substrate includes a first insulation layer, a core layer, a chip, a second insulation layer, a first circuit layer, and a second circuit layer. The core layer disposed on the first insulation layer has an opening that exposes a portion of the first insulation layer. The chip is adhered into a recess constructed by the opening and the first insulation layer. The second insulation layer is disposed on the core layer for covering the chip. The first circuit layer is disposed at the outer side of the first insulation layer located between the first circuit layer and the core layer. The second circuit layer is disposed at the outer side of the second insulation layer located between the second circuit layer and the core layer. The first circuit layer is electrically connected to the second circuit layer that is electrically connected to the chip.
Abstract:
A printed circuit board includes: a first electrode made of a tubular electric conductor formed on an inner wall of a first hole formed in the printed circuit board; a dielectric body disposed inside the first electrode; and a second electrode made of a tubular electric conductor formed on an inner wall of a second hole extending through the dielectric body, the second electrode having a center axis concentric with the first electrode.
Abstract:
A printed circuit board includes an insulating layer and an element embedded in the insulating layer and exposed through a surface of the insulating layer.
Abstract:
A printed circuit board according to an embodiment of the present invention includes, alternately, at least one insulating layer containing a synthetic resin as a main component; and a plurality of conductive layers including circuit patterns, wherein the plurality of circuit patterns of the plurality of conductive layers form a spiral pattern in plan view, and the plurality of circuit patterns are connected together via a plurality of through-holes so as to form a single closed loop in which a current flows counterclockwise or clockwise in an entirety of the spiral pattern. The conductive layers are preferably formed on both surfaces of the at least one insulating layer so as to form a pair. The spiral pattern includes a plurality of multi-row circuits arranged to form multi-rows, and a bridging circuit that connects an end portion of one multi-row circuit of one of the conductive layers to an end portion of another multi-row circuit of the other conductive layer, the other multi-row circuit being adjacent to the one multi-row circuit.
Abstract:
There is provided a heat dissipating substrate including: a base substrate having a first through hole formed therein; a first substrate disposed on an upper end portion of the base substrate and including a second through hole having a diameter smaller than that of the first through hole; and a heat dissipating pad disposed on an upper end portion of the second through hole. In addition, a flow phenomenon of a thermal conduction member (lead) may be reduced using the thermal conduction member by forming a second through hole smaller than a first through hole.
Abstract:
A wiring substrate includes a core layer having a penetrating hole, a first insulating layer disposed on a first surface of the core layer and having a first opening at a position of the penetrating hole, the first insulating layer containing no filler, a penetrating electrode disposed in the penetrating hole and in the first opening, and a first wiring layer laminated both on the first insulating layer at a first surface thereof facing away from the core layer and on an end face of the penetrating electrode, wherein the first surface of the first insulating layer and the end face of the penetrating electrode are planarized.
Abstract:
There are provided a printed circuit board and a method of manufacturing the same. The printed circuit board include a glass plate, an insulating member penetrating through the glass plate, insulating layers disposed on a first surface and a second surface of the glass plate, and a via through the insulating member.
Abstract:
Provided is a method of manufacturing a circuit board. The method includes: preparing a base substrate including a core layer and a first conductive layer that is formed on at least one surface of the core layer and includes an internal circuit pattern; forming a build-up material to cover the first conductive layer; forming in the build-up material at least one cavity through which the core layer and the first conductive layer are exposed; forming a laminated body by curing the build-up material in which the at least one cavity is formed; and forming a second conductive layer including an external circuit pattern on an outer surface of the laminated body.
Abstract:
A package apparatus comprises a first wiring layer, a first conductive pillar layer, a first molding compound layer, a second wiring layer, and a protection layer. The first wiring layer has a first surface and a second surface that are arranged opposite to each other. The first conductive pillar layer is disposed on the second surface of the first wiring layer, whereas the first conductive pillar layer is a non-circular conductive pillar layer. The first molding compound layer is disposed within a specific portion of the first wiring layer and the first conductive pillar layer. The second wiring layer is disposed on the first molding compound layer and one end of the first conductive pillar layer. The protection layer is disposed on the first molding compound layer and the second wiring layer.
Abstract:
A printed circuit board and a manufacturing method thereof. According to one embodiment, a printed circuit board may include a core part; and a conductor pattern disposed on at least one surface of the core part, the core part includes a glass core having a side portion that is polished or thinner than a central portion of the core. According to another embodiment, a method of manufacturing the printed circuit board may include cutting a glass plate to form a glass core; and removing cracks from at least one side surface of the cut glass core.