Abstract:
An integrated-optic spectrometer is disclosed for analyzing the composition of light reflected off a sample under analysis. In a simplified embodiment, the spectrometer includes a buffer, located on the top of a substrate, which is etched to create a diffraction grating having grating lines. The diffraction grating and grating lines are formed to provide diffraction of discrete wavelengths of light, while providing for maximum transmission of non-diffracted wavelengths. A waveguide is fabricated on top of the etched buffer through which the reflected light is directed. A photodiode detector array is located above the waveguide into which the diffracted wavelengths are diffracted, providing an analysis of the composition of the reflected light. A clad encompasses the integrated-optic spectrometer, thereby providing protection from outside interference.
Abstract:
A color measuring sensor assembly includes an optical filter such as a linear variable filter, and an optical detector array positioned directly opposite from the optical filter a predetermined distance. A plurality of lenses, such as gradient index rods or microlens arrays, are disposed between the optical filter and the detector array such that light beams propagating through the lenses from the optical filter to the detector array project an upright, noninverted image of the optical filter onto a photosensitive surface of the detector array. The color measuring sensor assembly can be incorporated with other standard components into a spectrometer device such as a portable calorimeter having a compact and rugged construction suitable for use in the field.
Abstract:
A template-type calorimeter comprising a light-transparent substrate having a diffraction grating on a surface thereof, the diffraction grating being operative to diffract light incident thereon from a spaced-apart aperture into its constituent spectral components. A template is provided on a surface of the substrate and arranged to receive the diffracted spectral components. The template has formed thereon at least three spatial filters, each for selectively transmitting diffracted spectral components in accordance with respective ones of the desired color-matching functions such as the CIE x(.lambda.), y(.lambda.), z(.lambda.) or r(.lambda.), g(.lambda.), b(.lambda.) color-matching functions. The diffraction grating and the template may be mounted on opposite sides of the substrate, or they may be mounted in a laterally spaced-apart relationship on the same side of the substrate, in which case the opposite side of the substrate is coated with a reflective material. Detectors are arranged adjacent and behind each spatial filter to detect the spectral components transmitted by the respective filters, and the entire assembly is mounted in a light-tight housing which houses the aperture and the assembly in the desired spaced-apart relationship.
Abstract translation:一种模板型量热计,其包括在其表面上具有衍射光栅的透光基板,所述衍射光栅可操作以将从其间隔开的孔入射的光衍射成其组成光谱分量。 在衬底的表面上提供模板,并设置为接收衍射光谱分量。 模板上形成有至少三个空间滤波器,每个空间滤波器用于根据期望的颜色匹配功能(例如CIE + E,ovs x + EE(λ),+ E,ovs y)中的相应的选择性地传输衍射光谱分量 + EE(λ),+ E,ovs z + EE(λ)或+ E,ovs r + EE(λ),+ E,ovs g + EE(λ),+ E,ovs b + 匹配功能。 衍射光栅和模板可以安装在基板的相对侧上,或者它们可以在基板的相同侧上以横向间隔的关系安装,在这种情况下,基板的相对侧被涂覆有反射 材料。 检测器被布置在每个空间滤波器的相邻和后方,以检测由各个滤光器传输的光谱分量,并且整个组件安装在不透光的壳体中,该外壳以期望的间隔关系容纳孔和组件。
Abstract:
A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.
Abstract:
Disclosed is an apparatus for measuring on-line the color and color-related properties of a moving sheet. Contrast ratio reflectance measurements are made for providing opacity corrections substantially in real time for a full color spectrum. An optical color sensor in accordance with the invention includes a pair of synchronized spectrometers, the first spectrometer being aligned to view a region of the sheet backed with a highly reflective ("white") material and the second spectrometer being aligned to view a region of the sheet backed with a highly absorptive ("black") material. The use of two spectrometers permits substantially simultaneous "black" and "white" measurements for a full color spectrum. The optical color sensing system further includes two light sources, a flashlamp and a continuously energized tungsten filament lamp. Light beams from the two sources are combined to form a sheet-illuminating third beam approximating the D65 standard source. The intensity of the flashlamp is electronically controlled to maintain the balance of UV to visible light that characterizes the standard source. The color sensor further includes a sheet backing system including a rotatable standard wheel carrying a white standard tile. Provision is made to permit rotation of the standard wheel and to standardize the sensor off-sheet while maintaining isolation of the white standard tile from the paper mill environment. The sheet backing system includes a paper guide plate defining an annular vortex space into which air is introduced from a pressurized source. A low pressure region thereby produced in the vortex space draws the paper sheet toward the guide plate. At the same time, circulating air spirals outwardly from the vortex space to form a thin air film or air bearing between the sheet and the paper guide. Sheet flutter is thereby minimized and damage to the sheet is prevented.
Abstract:
An active monolithic optical device for wavelength division multiplexing (WDM) incorporating diode laser arrays, an output coupling waveguide and a curved Rowland circle based grating to produce a plurality of individual laser beams at slightly different wavelengths is integrated in a common electro-optic material. The wavelength of each laser source is determined by the geometry of the array and the diffraction grating design. The output of all the channels can be collected into a concentrator or lens to be multiplexed in a single output. Applications include a WDM optical amplifier and WDM laser source.
Abstract:
An integrated optic holographic spectrometer (10) for analyzing electromagnetic radiation from a source (12) is disclosed. The holographic spectrometer (10) comprises a substrate (18) having aperture (20) for restricting the receipt of electromagnetic radiation. The spectrometer (10) also includes two optical waveguides (22, 24) for dividing the electromagnetic radiation received through the aperture (20) into at least a first and second portions. A geodesic lens (26) is provided for collimating the first and second portions of the electromagnetic radiation. Finally, the spectrometer (10) includes a linear detector array (28) optically communicating with the geodesic lens (26) to provide an output responsive to the interference between the first and second portions of the electromagnetic radiation received through the aperture (20).
Abstract:
An integrated circuit spectrometer comprises a photonic circuit comprising: an optical input port for receiving light from a light source: and a filter array of filter elements, such as microring resonators, in optical communication with the optical input port. Each microring resonator is characterized by a different series of resonance wavelengths. If alternative filter elements are used, the filter elements may have different filter peaks to each other. The integrated circuit spectrometer also comprises a plurality of detectors, each of which is associated with one of said microring resonators to detect photons from an output of the microring resonator: and at least one processor configured to reconstruct, from signals received at the detectors, an input spectrum of the light received at the optical input port. The input spectrum may be reconstructed by an artificial neural network.
Abstract:
A spectrometer includes a transparent substrate including a first surface and a second surface that face each other and are substantially parallel to each other; a slit provided on the first surface and through which light is incident onto the transparent substrate; a spectrum optical system including metasurface including a plurality of nanostructures that are two-dimensionally arranged and satisfy a sub-wavelength scattering condition, wherein the metasurface includes a focusing metasurface which includes first nanostructures of the plurality of nanostructures, and is configured to reflect, disperse, and focus the light incident thereon through the slit, at different angles based on respective wavelengths; and a sensor configured to receive the light from the focusing metasurface. When L is a total length of an optical path from the slit to the sensor and D is a thickness of the transparent substrate, L and D satisfy the following inequality: L/D>3.
Abstract:
An interferometer includes a coherent light source and an array of electrically coupled light-sensitive pixel elements. The interferometer is configured to direct an internal optical path of the coherent light source and an external optical path of the coherent light source into a monolithic unit cell. In addition, the monolithic unit cell is configured to direct the internal optical path first through the monolithic unit cell and then onto the array and also configured to direct the external optical path back outside the monolithic unit cell through an external environment and then back into the monolithic unit cell and finally onto the array. In addition, interferometer is further configured to combine the internal optical path and the external optical path at the array and produce a first interferogram on the array, the interferogram characterizing an optical property of the external environment.