Abstract:
An electronic device or entertainment gaming machine comprising: at least one betting terminal having a software program or plurality of software programs that allow at least a second player to place a bet on a jackpot if a first player declines the right to place a bet on the jackpot, wherein the second player is at a betting terminal that is apart from the conventional casino table game and the first player is playing at a conventional casino table game and is granted a right of first refusal to place a bet on jackpot by virtue of the first player's bet on the conventional casino table game, wherein the outcome of the jackpot is determined according to a combination of cards or dice in the conventional casino table game.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, an imaging device includes at least one objective lens configured to receive light backscattered by an object, a plurality of pixel array photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a beam steering assembly in optical communication with the at least one objective lens and the photo-sensors. The beam steering assembly directs light received by at least one objective lens from the tissue of a subject to at least one pixel array photo-sensor in the plurality of pixel array photo-sensors.
Abstract:
Systems, methods, compositions, and apparatus for laser induced ablation spectroscopy are disclosed. A sample site position sensor, stage position motors operable to move the stage in three independent spatial coordinate directions, and a stage position control circuit can move an analysis sample site to selected coordinate positions for laser ablation. Light emitted from a plasma plume produced with laser ablation can be gathered into a lightguide fiber bundle that is subdivided into branches. One branch can convey a first portion of the light to a broadband spectrometer operable to analyze a relatively wide spectral segment, and a different branch can convey a second portion of the light to a high dispersion spectrometer operable to measure minor concentrations and/or trace elements. Emissions from a plasma plume can be simultaneously analyzed in various ways using a plurality of spectrometers having distinct and/or complementary capabilities.
Abstract:
A multi-channel double-pass imaging spectrometer based on a reimaging or relayed all-reflective optical form, such as a four-mirror anastigmat (4MA) or five-mirror anastigmat (5MA). In one example, such a spectrometer includes a slit through which incident electromagnetic radiation enters the spectrometer, an imaging detector positioned at an image plane of the spectrometer co-located with the slit, and double-pass all-reflective reimaging optics configured to receive the electromagnetic radiation from the slit and to output a collimated beam of the electromagnetic radiation, and further configured to produce a reimaged pupil positioned between the double-pass all-reflective reimaging optics and the image plane. The spectrometer further includes at least one dispersive element configured to spectrally disperse the infrared electromagnetic radiation in each channel and being oriented to direct the dispersed output through the double-pass all-reflective reimaging optics to the image plane.
Abstract:
A multi-channel imaging spectrometer and method of use thereof. One example of the multi-channel imaging spectrometer includes a single entrance slit, a double pass reflective triplet and at least a pair of diffraction gratings. The spectrometer is configured to receive and collimate an input beam from the entrance slit, to split the collimated beam into two spectral sub-bands using a beamsplitter, and to direct each sub-band to one of the pair of diffraction gratings. The diffraction gratings are each configured to disperse the received portion of the collimated beam into its constituent colors, and redirect the dispersed outputs through the reflective triplet to be imaged into an image sensor located at a focal plane aligned with the entrance slit.
Abstract:
The invention relates to a system and a method for optical measurement of a target, wherein the target is illuminated, either actively illuminated, reflecting ambient light, or self illuminating, and a measurement radiation beam received from the target or through it is detected. The measurement system has optical fibers for guiding radiation from/to target positions. Radiation of several target positions is simultaneously filtered by a Fabry-Perot interferometer and detected by a row detector, for example.
Abstract:
Fast focusing methods and devices for multi-spectral imaging are disclosed. The method comprising selecting one of a plurality of imaging channel as a reference channel, adjusting rotation positions of a stepper motor, calculating focus measures corresponding to all rotation positions of the stepper motor, and obtaining a first distribution curve; in each of the other imaging channels, selecting at least three rotation positions of the stepper motor, matching focus measures at the selected rotation positions with the first distribution curve to obtain a second distribution curve and a offset value between the first distribution curve and the second distribution curve, and calculating a clear focusing position of the imaging channel to be focused according to the offset value; performing a fine-tuning focusing, and thereby obtaining a more precise clear focusing position. A fast focusing for multi-spectral imaging and obtain clear multi-spectral images is obtained.
Abstract:
A spectral characteristic obtaining apparatus including a light irradiation unit configured to emit light onto a reading object; a spectroscopic unit configured to separate at least a part of diffused reflected light from the light emitted onto the reading object by the light irradiation unit into a spectrum; and a light receiving unit configured to receive the diffused reflected light separated into the spectrum by the spectroscopic unit and to obtain a spectral characteristic. The light receiving unit is configured to be a spectroscopic sensor array including plural spectroscopic sensors arranged in a direction, and the spectroscopic sensors include a predetermined number of pixels arranged in the direction to receive lights with different spectral characteristics from each other.
Abstract:
An imaging transform spectrometer, and method of operation thereof, that is dynamically configurable “on demand” between an interferometric spectrometer function and a broadband spatial imaging function to allow a single instrument to capture both broadband spatial imagery and spectral data of a scene. In one example, the imaging transform spectrometer is configured such that the modulation used for interferometric imaging may be dynamically turned ON and OFF to select a desired mode of operation for the instrument.
Abstract:
A system and method of high-speed microscopy using a two-photon microscope with spectral resolution. The microscope is operable to provide two- to five-dimensional fluorescence images of samples, including two or three spatial dimensions, a spectral dimension (for fluorescence emission), and a temporal dimension (on a scale of less than approximately one second). Two-dimensional (spatial) images with a complete wavelength spectrum are generated from a single scan of a sample. The microscope may include one of a multi-beam point scanning microscope, a single beam line scanning microscope, and a multi-beam line scanning microscope. The line scans may be formed using one or more of curved mirrors and lenses. The multiple beams may be formed using one of a grating, an array of lenses, and a beam splitter.