Abstract:
A new architecture for implementing a time-resolved Raman spectrometer is 2-3 orders of magnitude faster than current systems. In one embodiment, the invention employs a rotating optical switch to time multiplex an input signal through multiple band-pass filters and into a single optical detector which is electrically activated only when the filtered input light pulse is about to impact it.Time-multiplexing the input signal through multiple optical filters and time-sequencing the optical detector enables the device to detect and analyze 2-3 orders of magnitude faster than current designs. In one embodiment, the system may be employed for the diagnostics of a pathological condition of skin tissue in patients, such as malignant melanoma or other types of skin cancers and abnormal conditions.
Abstract:
In this spectral instrument, a plurality of interference filters 31, 32 . . . with transmitting wavebands different from each other are arranged in order so that light reflected by a specific interference filter 31 is made incident on the interference filter 32 on the next stage, and at positions on which light transmitted through each interference filter is made incident, photodetecting devices 41, 42 . . . are provided, wherein a silver thin film 31a with a thickness of 20 to 200 nm is provided on the light incidence surface side of the interference filter 31 on the first stage.
Abstract:
An optical measurement apparatus which includes at least one each of a light source, an optical element, a photodetector, and a sample container, and which measures a physical property of a biological sample in a solution retained by the sample container according to a plurality of kinds of measurement items, wherein a combination of the light source, the optical element, and the photodetector is selected or changed according to the measurement item, and a position where the photodetector is located is adjusted according to the selection or change based on intensity of light accepted by the photodetector.
Abstract:
A diffraction grating and a prism with the appropriate characteristics are employed to provide a combined dispersive characteristic that is substantially linear over the visible spectrum. Radiation from the grating and prism is collimated by a lens towards a detector array. The grating or a telecentric stop between the grating and prism is placed at a focal point of the lens in a telecentric arrangement so that equal magnification is achieved at the detector array. If the detector array is replaced by a plurality of optical channels, a multiplexer/demultiplexer is obtained.
Abstract:
A microscope is modified to allow for precise imaging of samples using different filters at different focal planes under computer control. A filter accessory includes a filter disc having bandpass filters. The filter disc may be rotated to move a selected filter into the optical path between a light source and the microscope sample. Adjustment of the image plane of the microscope is controlled by the computer using feedback from a lens position sensor.
Abstract:
An optical analysis system employs a rectangular beam of light passing through interference filters to analyze the constituents of a test sample moving through the beam. A plurality of interference filters are moved successively through the beam between the source of the beam and the sample and are tilted about an axis as they are moved, thereby transmitting a range of wavelengths to the sample. Skew rays of light in the beam strike the filters at different angles from the angles at which rays parallel to the axis of the beam strike the filters and so transmit wavelengths different from those of rays parallel to the axis of the beam. The angle deviation is greatest for the skew light rays which are skewed from the axis of the beam in a plane perpendicular to the tilt axis of the filters. Thus, the shorter dimension of the rectangular beam is arranged to be perpendicular to the tilt axis of the filters.
Abstract:
A portable reflectance spectrometer is disclosed. The spectrometer essentially includes an optical unit and an electronic recording unit. The optical unit includes a pair of thermoelectrically-cooled detectors, for detecting total radiance and selected radiance projected through a circular variable filter wheel, and is capable of operating to provide spectral data in the range 0.4 .mu.m to 2.5 .mu.m without requiring conventional substitution of filter elements. The electronic recording unit essentially includes power supplies, amplifiers, and digital recording electronics designed to permit recordation of data on tape casettes. Both the optical unit and electronic recording unit are packaged to permit carriage as backpack items and thereby be manually portable.
Abstract:
A system comprising a light source, and a retention device configured to receive and retain a sample for measurement. The system includes a detector. An optical path couples light between the light source, the sample when present, and the detector. An optical objective is coupled to a turret assembly and configured to couple light from the light source to the sample when present, and couple reflected light to the detector. An amplified piezo actuator (APA) assembly is coupled to the turret assembly. A controller is coupled to the APA assembly and configured to automatically control a vertical position of the optical objective using the APA assembly. The detector is configured to output data representing a film thickness and a surface profile of the sample when present.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
A photometric device (1) measuring light emitted from a measuring object such as a display (2) includes two types of filters including interference filters (20X, 20Y, and 20Z) and an LVF (21), a disk (22) supporting the interference filters and the LVF, a motor (23) rotatably drive the disk to cause the light emitted from the measuring object to scan the interference filters and the LVF sequentially, a photoreceptor (13) converting light passed through the interference filters and light passed through the LVF to an electrical signal, a photometric controller (14) outputting photometric information based on the electrical signal of the light passed through the interference filters and converted by the photoreceptor and the electrical signal of the light passed through the LVF and converted by the photoreceptor.