Abstract:
A cathode suitable for poor vacuum conditions and repeated exposures to air consists of a molybdenum support, compact or compressed powder, welded on a tungsten wire and having thereon a compressed mixture of rhenium with lanthanum hexaboride. Instead of rhenium, a tungsten boride such as W2B or W2B5 may be chosen.
Abstract:
A method to reduce the work function of a carbon-coated lanthanum hexaboride (LaB6) cathode wherein the exposed tip of the cathode is exposed to moisture between two heat treatments is provided. The work function may be reduced by 0.01 eV or more.
Abstract:
An improved cathode comprises a cone-shaped emitter with a carbon-based coating applied to the emitter cone surface, in which there is a narrow annular gap between the emitter body and the carbon coating. The gap prevents direct contact between the carbon coating and the crystalline emitting material, thereby preventing damaging interactions and extending the useful lifetime of the cathode.
Abstract:
An electron beam source includes a base and a tip fixed to the base and extending from the base. The tip includes a core and a coating applied to the core. The core has a surface that includes a first material. The coating includes a second material which is different from the first material. The second material forms a surface of the tip, and the second coating includes more than 30% by weight of a lanthanide element.
Abstract:
An electron emissive material comprises an alkaline earth metal halide composition and operable to emit electrons on excitation. A lamp including an envelope, an electrode including an alkaline earth metal halide electron emissive material and a discharge material, is also disclosed.
Abstract:
Electron emission materials consisting of carbides, borides, and oxides, and related mixtures and compounds, of Group IVB metals Hf, Zr, and Ti, Group IIA metals Be, Mg, Ca, Sr, and Ba, and Group IIIB metals Sc, Y and lanthanides La through Lu are used in electrodes. These electron emission materials are typically contained in a refractory metal matrix formed of tungsten, tantalum, rhenium, and their alloys, but may also be used by themselves. These materials and electrodes have high melting points, low vapor pressures, low work functions, high electrical and thermal conductivity, and high thermionic electron emission and field emission properties.
Abstract:
A thermionic cathode structure comprises two parallel thermionic electron emitter elements which are made of a heat resistant and electric conductive inorganic compound. Each of them has one end electrically closed and the other end functioning as a current feeding port.
Abstract:
A thermionic emission cathode comprises a cathode tip made of an alkaline earth metal or rare earth metal hexaboride, a metallic support for supporting a base of said cathode tip and a reaction barrier layer comprising colloidal carbon and a reaction barrier material which bonds said cathode tip and said metallic support in one body.
Abstract:
A variable shaping type electron beam exposing apparatus is provided which comprises an electron gun which irradiates an electron beam from the front end of a cathode chip; shaping plates having openings of variable shapes for shaping the electron beam irradiated from the electron gun into the shapes of these openings; and an objective lens for focusing the electron beam passed through the shaping plates into a predetermined shape on a sample. In this apparatus, the cathode chip is made of single-crystal lanthanum hexaboride whose axial orientation is , the front end of it is formed into a circular conical shape, and half the vertical angle of the front end is set to be between 60.degree. and 85.degree.. The maximum area of the image on the sample is between 2 to 50 .mu.m.sup.2.
Abstract:
Ceramic material for a low temperature direct heating electron gun cathode, wherein it is constituted by a mixed ceramic material of a hexaboride of a refractory material consisting of at least one substance with a high emissive power from the group consisting of La, Sr, and Ba hexaborides and a conductive material, boron carbide, having a resistivity higher than that of an emissive substance, the structure of the ceramic material resulting from its production by cofritting of the said components.