Abstract:
The source of electrons is a nanotip in a vacuum as used in near field microscopy. The source of ions is a similar nanotip in vacuum supplied with liquid metal (gallium) as in a liquid-metal ion source. Electrons or ions from this nanometre-sized tip are extracted by centralising the tip over an aperture plate and applying a suitable voltage to the tip. The electrons (ions) pass through this plate and are accelerated up to several keV using a nanoscale/microscale accelerating column before being focussed using further microscale (or nanoscale) cylindrical lenses. The final element is an aberration corrected miniature (or sub-miniature) einzel lens which can focus the beam at several millimetres from the end of the instrument.
Abstract:
An electron beam apparatus is offered which is capable of being used optimally over a wide range of electron beam currents. A method of controlling this apparatus is also offered. The apparatus has an electron emitter for producing an electron beam. The beam is collimated or slightly converged (made a real-image mode beam) by the first condenser lens. As a result, the amount of the electron beam limited by the anode electrode can be reduced to a minimum. The excitation of the first condenser lens is fixed to parallel beam conditions and so movement of the virtual electron source is prevented. This can enhance the axial accuracy.
Abstract:
The present invention provides an electron beam apparatus for irradiating a sample with primary electron beams to detect secondary electron beams generated from a surface of the sample by the irradiation for evaluating the sample surface. In the electron beam apparatus, an electron gun has a cathode for emitting primary electron beams. The cathode includes a plurality of emitters for emitting primary electron beams, arranged apart from one another on a circle centered at an optical axis of a primary electro-optical system. The plurality of emitters are arranged such that when the plurality of emitters are projected onto a straight line parallel with a direction in which the primary electron beams are scanned, resulting points on the straight line are spaced at equal intervals.
Abstract:
A method and apparatus for controlling beam emittance by placing a quadrupole lens array in a drift space of an illumination system component. The illumination system component may be an electron gun or a liner tube or drift tube, attachable to an electron gun. The quadrupole lens array may be three or more mesh grids or a combination of grids and continuous foils. The quadrupole lens array forms a multitude of microlenses resembling an optical “fly's eye” lens. The quadrupole lens array splits an incoming solid electron beam into a multitude of subbeams, such that the outgoing beam emittance is different from the incoming beam emittance, while beam total current remains unchanged. The method and apparatus permit independent control of beam current and beam emittance, which is beneficial in a SCALPEL illumination system.
Abstract:
A charged particle beam (e.g., ions or electrons) apparatus including two electrostatic focusing lenses and an electrode having a diameter limiting aperture positioned between the lenses is further provided with two electrode assemblies which interact with an extractor electrode and with a source of charged particles such that the trajectories of the particles in the beam passing through the second of the two assemblies are substantially parallel. This feature and other disclosed improvements facilitate the production of a substantially monoenergetic beam which under a first set of conditions can be focused to provide a small-diameter, spherical-aberration limited beam and which under another set of conditions, can be focused to provide a high current beam.
Abstract:
A high power electron beam machine for operating on a workpiece is disclosed in which the beam focus is automatically maintained constant without the necessity of lens current variation regardless of changes in beam current. The electron gun assembly for the machine consists of a Rogowski gun having a square ribbon filament recessed from an enlarged filament aperture, and a pin type anode with a reduced height and an increased gap from the bias electrode. The electron gun produces a stationary image or apparent source of electrons even though the beam current or the high voltage operating level of the electron gun is varied. Increased life of the ribbon filament is obtained by using a ribbon filament consistng of tungsten with 3 percent rhenium added thereto.
Abstract:
A storage system for the mass recording and readout of digital data with ultra high resolution. An electron beam structure is provided for forming a beam of extremely small focused spot diameter, on the order of 0.1 microns, and high current density capability, on the order of 1,000 amperes per sq. cm., which records data by scanning over defined areas of the storage medium surface and micromachining elemental portions of said medium as a function of beam modulation. Readout may be subsequently accomplished by similarly scanning the beam at reduced power density and detecting electrons that have been transmitted by or reflected from the storage medium.
Abstract:
In an electron gun, an anode structure in which the electron beam aperture is defined by four mutually insulated anode segments which may be energized to provide beam centering. In a preferred embodiment, the anode segments are shaped to intercept the beam if it is off-center, and are returned to ground potential through respective resistors thereby being operative automatically to center the beam.