Abstract:
According to one embodiment, an X-ray tube includes an anode target, a cathode including a filament and a convergence electrode which includes a groove portion, and an envelope. The groove portion includes a pair of first bottom surfaces which are located in the same plane as the filament and between which the filament is interposed in a width direction of the groove portion, and a pair of second bottom surfaces between which the filament and the pair of first bottom surfaces are interposed in a length direction of the groove portion and which are located closer to an opening of the groove portion than the pair of first bottom surfaces.
Abstract:
The disclosure relates to a method of operating a gas field ion beam system in which the gas field ion beam system comprises an external housing, an internal housing, arranged within the external housing, an electrically conductive tip arranged within the internal housing, a gas supply for supplying one or more gases to the internal housing, the gas supply having a tube terminating within the internal housing, and an extractor electrode having a hole to permit ions generated in the neighborhood of the tip to pass through the hole into the external housing. The method comprises the step of regularly heating the external housing, the internal housing, the electrically conductive tip, the tube and the extractor electrode to a temperature of above 100° C.
Abstract:
The present disclosure relates to a charged particle beam system comprising a charged particle beam source, a charged particle column, a sample chamber, a plurality of electrically powered devices arranged within or at either one of the charged particle column, the charged particle beam source and the sample chamber, and at least one first converter to convert an electrical AC voltage power into an electrical DC voltage. The first converter is positioned at a distance from either of the charged particle beam source, the charged particle column and the charged particle chamber, and all elements of the plurality of electrically powered devices, when operated during operation of the charged particle beam source, are configured to be exclusively powered by the DC voltage provided by the converter.
Abstract:
An insulation structure provided among a plurality of electrodes for extraction of an ion beam from a plasma generating section is provided. The insulation structure includes an insulation member including a first part connected to a first electrode and a second part connected to a second electrode and configured to support the first electrode to the second electrode, a first cover surrounding at least a part of the first part to protect the first part from contamination particles, and a second cover surrounding at least a part of the second part to protect the second part from contamination particles. At least one of the first part and the second part is made of a machinable ceramic or a porous ceramic.
Abstract:
Provided are an aberration corrector that reduces irregularity of a magnetic field of a multipole to obtain an image of high resolution and a charged particle beam apparatus using the same. The aberration corrector includes a plurality of magnetic field type poles, a ring that magnetically connects the plurality of poles with one another and an adjustment member disposed between the pole and the ring to adjust a spacing between the pole and the ring per pole.
Abstract:
The present invention provides a composite charged particle beam device which is provided with two or more charged particle beam columns and enables high-resolution observation while a sample is placed at the position of a cross point. The present invention has the following configuration. A composite charged particle beam device is provided with a plurality of charged particle beam columns (101a, 102a), and is characterized in that a sample (103) is disposed at the position of an intersection point (171) where the optical axes of the plurality of columns intersect, a component (408a, 408b) that forms the tip of an objective lens of the charged particle beam column (102a) is detachable, and by replacing the component (408a, 408b), the distance between the intersection point (171) and the tip of the charge particle beam column can be changed.
Abstract:
The invention relates to an electrode stack (70) comprising stacked electrodes (71-80) for manipulating a charged particle beam along an optical axis (A). Each electrode comprises an electrode body with an aperture for the charged particle beam. The electrode bodies are mutually spaced and the electrode apertures are coaxially aligned along the optical axis. The electrode stack comprises electrically insulating spacing structures (89) between each pair of adjacent electrodes for positioning the electrodes (71-80) at predetermined mutual distances along the axial direction (Z). A first electrode and a second electrode each comprise an electrode body with one or more support portions (86), wherein each support portion is configured to accommodate at least one spacing structure (89). The electrode stack has at least one clamping member (91-91c) configured to hold the support portions (86) of the first and second electrodes, as well as the intermediate spacing structure (89) together.
Abstract:
The invention relates to a collimator electrode, comprising an electrode body (81) that is provided with a central electrode aperture (82), wherein the electrode body defines an electrode height between two opposite main surfaces, and wherein the electrode body accommodates a cooling conduit (105) inside the electrode body for transferring a cooling liquid (102). The electrode body preferably has a disk shape or an oblate ring shape.The invention further relates to a collimator electrode stack for use in a charged particle beam generator, comprising a first collimator electrode and a second collimator electrode that are each provided with a cooling conduit (105) for transferring the cooling liquid (102), and a connecting conduit (110) for a liquid connection between the cooling conduits of the first and second collimator electrodes.
Abstract:
An electrode to be used for an electrostatic lens, wherein the electrode at least includes: a first substrate having a first through-hole and a second substrate having a second through-hole; the first substrate having a thickness smaller than the second substrate; the first through-hole having a diameter smaller than the second through-hole; the second substrate having a specific resistance smaller than the first substrate, wherein the first substrate and the second substrate are superimposed so that the first through-hole and the second through-hole are aligned relative to each other. Notching taking place near any of the through-holes in a dry etching process can be reduced, and thus, the through-holes can be formed accurately.
Abstract:
A film deposition method using a film deposition apparatus, includes: a film deposition process step in which at least a substrate is mounted on at least one of the circular concave portions and a film is deposited on the substrate; and a particle reducing process step performed before or after the film deposition process step, in which particles in the vacuum chamber are reduced without mounting substrates on the circular concave portions, the particle reducing process step including, a step of supplying a first gas to the vacuum chamber; a step of generating plasma from the first gas by supplying high frequency waves to a plasma generating device provided for the vacuum chamber; and a step of exposing the plurality of circular concave portions, on each of which a substrate is not mounted, to the plasma while rotating the susceptor.