Vapor-Barrier Vacuum Isolation System
    32.
    发明申请
    Vapor-Barrier Vacuum Isolation System 有权
    气体隔离真空隔离系统

    公开(公告)号:US20100122901A1

    公开(公告)日:2010-05-20

    申请号:US12470689

    申请日:2009-05-22

    Abstract: A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

    Abstract translation: 系统包括在真空室内的准直光束源,可冷凝阻挡气体,冷却材料,泵以及由冷却材料冷却以隔离阻挡气体的隔离室。 每个隔离室的压力水平基本上大于真空室中的压力水平。 同轴对齐的孔连接工作室,隔离室和真空室。 泵排出未凝结的阻挡气体。 阻挡气体阻止大气蒸气从工作室进入隔离室,并且在进入每个隔离室时经历超音速流动膨胀。 一种方法包括将隔离室连接到真空室,将蒸汽引导到与工作室的边界,以及当蒸气通过孔口进入隔离室时使其蒸气膨胀。 蒸汽在每个隔离室中使用冷却材料冷凝,未冷凝的蒸汽通过泵从隔离室泵出。

    Cryo-charging specimen holder for electron microscope
    34.
    发明申请
    Cryo-charging specimen holder for electron microscope 失效
    用于电子显微镜的冷冻充电试样架

    公开(公告)号:US20090242795A1

    公开(公告)日:2009-10-01

    申请号:US12078223

    申请日:2008-03-28

    Applicant: Chih-Yu Chao

    Inventor: Chih-Yu Chao

    Abstract: The present invention relates to a cryo-charging specimen holder for the electron microscope, particularly to a cryo-charging specimen holder for the electron microscope to hold various biological materials. The major feature of the invention is to charge the biological specimen and freeze the specimen at low temperature. The ice around the biological sample is also doped, so that after charging the doped ice surrounding the sample has a conductivity level comparable to that of conductor. Therefore, the sample can be embedded by the doped and charged ice obtaining the property of conductor, in order to be observed by the electron microscope.

    Abstract translation: 本发明涉及一种用于电子显微镜的低温充电试样架,特别涉及用于电子显微镜保持各种生物材料的低温充电试样架。 本发明的主要特征是对生物样品充电并在低温下冷冻试样。 生物样品周围的冰也被掺杂,因此在充电之后,样品周围的掺杂冰具有与导体相当的导电率。 因此,可以通过掺杂和充电的冰来嵌入样品,获得导体的性质,以便通过电子显微镜观察。

    Stage for plasma processing apparatus, and plasma processing apparatus
    36.
    发明申请
    Stage for plasma processing apparatus, and plasma processing apparatus 审中-公开
    等离子体处理装置的阶段和等离子体处理装置

    公开(公告)号:US20080041312A1

    公开(公告)日:2008-02-21

    申请号:US11889339

    申请日:2007-08-10

    Abstract: [Object]To provide a stage for plasma processing apparatus, the stage being capable of improving uniformity of electric field strength in a plasma so as to enhance an in-plane uniformity of a plasma process to a substrate, and to provide a plasma processing apparatus provided with this stage. [Means for Solving the Problem]A stage 3 for a plasma processing apparatus 2 comprises: a conductive member 31 connected to a radiofrequency power source, the conductive member serving as an electrode for generating a plasma and/or an electrode for drawing ions from a plasma; a dielectric layer 32 covering a central part of an upper surface of the conductive member, for making uniform a radiofrequency electric field applied to a plasma through a substrate to be processed wafer W) placed on the placing surface; and an electrostatic chuck 33 laminated on the dielectric layer 35, the electrostatic chuck having an electrode film embedded therein. The electrode film satisfies δ/z≧1,000 (z; a thickness of the electrode film 35, 6; a skin depth of the electrode film for the electrostatic chuck as to a radiofrequency power supplied from the radiofrequency power source).

    Abstract translation: 为了提供等离子体处理装置的载物台,能够提高等离子体的电场强度的均匀性,从而提高等离子体处理对基板的面内均匀性,并且提供等离子体处理装置 提供这个阶段。 解决问题的手段等离子体处理装置2的阶段3包括:连接到射频电源的导电构件31,用作产生等离子体的电极的导电构件和/或用于从 等离子体; 覆盖导电部件的上表面的中心部分的电介质层32,用于使放置在放置面上的待处理晶片W的等离子体的射频电场均匀化; 以及层压在电介质层35上的静电卡盘33,其中嵌有电极膜的静电卡盘。 电极膜满足delta / z> = 1,000(z;电极膜35,6的厚度;静电卡盘的电极膜的表皮深度,从射频电源提供的射频电力)。

    Digital parallel electron beam lithography stamp
    37.
    发明申请
    Digital parallel electron beam lithography stamp 失效
    数字平行电子束光刻印

    公开(公告)号:US20070257212A1

    公开(公告)日:2007-11-08

    申请号:US11418057

    申请日:2006-05-05

    Applicant: Blaise Mouttet

    Inventor: Blaise Mouttet

    Abstract: An array of vertically aligned electron emitting nanotips such as multiwall carbon nanotubes are formed for use as a lithographic stamp. Crosswire addressing is used to generate electron emission from particular nanotips within the array. The nanotip array may be used to cure a resist, produce localized electrochemical reactions, establish localized electrostatic charge distributions, or perform other desirable coating or etching process steps so as to create nanoelectronic circuitry or to facilitate molecular or nanoscale processing.

    Abstract translation: 形成垂直排列的电子发射纳米尖端的阵列,例如多壁碳纳米管,用作光刻印模。 交叉线寻址用于从阵列内的特定纳米尖端产生电子发射。 纳米尖端阵列可用于固化抗蚀剂,产生局部电化学反应,建立局部静电电荷分布,或执行其它所需的涂覆或蚀刻工艺步骤,以便产生纳米电子电路或促进分子或纳米级处理。

Patent Agency Ranking