Abstract:
The present embodiments relate to providing electrical connectivity to electric-powered components mounted in parallel on a wiring board. An electrical apparatus is provided in which electricity is conducted from an electrically conductive member onto first and second electrically conductive pathways, of a wiring board through the use of first and second resiliently-deformable electrically conductive connectors. First and second electric-powered components are mounted to the respective first and second electrically conductive pathways. The first and second resiliently-deformable electrically conductive connectors are compressed between the electrically conductive member and the wiring board such that the first connector provides an electrical connection between the conductive member and the first electrically conductive pathway, and the second connector provides an electrical connection between the conductive member and the second electrically conductive pathway.
Abstract:
Disclosed are a protective main board for a battery cell, an electronic terminal and a method for assembling a battery cell of an electronic terminal. The protective main board for a battery cell includes a main board body and a conducting component. The main board body includes a main board circuit and a protection circuit configured to protect the battery cell, and the protection circuit is connected with the main board circuit. The conducting component is arranged on the main board body, and includes a first conducting member and a second conducting member, and the battery cell is electrically connected with the protection circuit through the first conducting member and the second conducting member respectively.
Abstract:
The invention concerns an electronic component that comprises a printed circuit board stack with multiple printed circuit boards arranged one on top of the other and that is used, in particular, for model aircraft or commercially utilized unmanned aircraft. The printed circuit boards are held at a distance from one another by spacers. The fastening elements that are provided here are electrically conductive in design, and the printed circuit boards are connected to one another in an electrically conductive manner and also mechanically by these fastening elements.
Abstract:
The mezzanine card system and method of use thereof provides a baseboard having opposing sides, each side configured to receive a mezzanine card thereon. A plurality of mezzanine cards are provided having integrated circuits, such as Field Programmable Gate Arrays, fixedly attached thereon. The mezzanine cards of the system reduce reprogramming time from about 15 months to about six weeks. This drastic reduction in reprogramming time provides great advantages for circuitry systems, especially when these systems are used within battlefield and electronic warfare technology. The surfaces of the baseboard are an Electroless Nickel, Electroless Palladium, and Immersion Gold (ENEPIG) plated finish.
Abstract:
Coil patterns are provided in first and second outer surface layers and an inner layer of the board. First and second heat-dissipation patterns are provided in the second outer surface layer. A first thermal inter-layer connection member connects the coil pattern of the first outer surface layer and the first heat-dissipation pattern. A second thermal inter-layer connection member connects the coil pattern of the inner layer and the second heat-dissipation pattern. The coil pattern provided in the second outer surface layer and the first and second heat-dissipation patterns are separated from each other. An area of the second heat-dissipation pattern is larger than an area of the first heat-dissipation pattern.
Abstract:
A disclosed method of joining a cooling component includes joining an electronic component and a spherical shaped bottom plate of a cooling component to each other by pressing the bottom plate against the electronic component, while providing a thermal bonding material between the bottom plate and the electronic component.
Abstract:
An electronic assembly for use in space missions that includes a PCB and one or more multi-pin CGA devices coupled to the PCB. The PCB has one or more via-in-pad features and each via-in-pad feature comprises a land pad configured to couple a pin of the one or more multi-pin CGA devices to the via. The PCB also includes a plurality of layers arranged symmetrically in a two-halves configuration above and below a central plane of the PCB.
Abstract:
A connection board includes at least one cut-out to fasten the connection board to an installation board and multiple contact surfaces electrically isolated from one another, wherein the contact surfaces electrically connect to one another when the connection board is in a fastened state by a fastener that extends through the cut-out.
Abstract:
An electronic device includes a housing, a circuit board, a plurality of holders having mechanical connectors to the housing and to the circuit board and mechanically fixing the circuit board within the housing, and at least one capacitor having a first electrode, a second electrode and a dielectric arranged between the first and second electrodes. The first electrode is electrically connected to a contact on the circuit board, and the second electrode is electrically connected to the housing. The at least one capacitor is part of one of the plurality of holders; and the dielectric of the capacitor is part of a thermal insulation between the connectors to the circuit board and to the housing.
Abstract:
An electronic control unit includes a substrate, an electronic component, a heat sink, a cover, a heat accumulator, and a screw. A wiring pattern is formed on the substrate. The electronic component is mounted on the substrate and generates heat upon energization thereof. The heat sink is provided on one side of the substrate in its thickness direction. The cover is made of resin and is provided on the other side of the substrate in its thickness direction. The heat accumulator is fixed to a part of the cover on the substrate-side and is in contact with a surface of the substrate on the cover-side. One end of the screw is connected to the heat sink. A central portion of the screw is inserted through a hole passing through the substrate in its thickness direction. The other end of the screw is connected to the heat accumulator.