Method for detecting time-resolved fluorescence based on principle of phase balanced frequency multiplication modulation

    公开(公告)号:US09869638B2

    公开(公告)日:2018-01-16

    申请号:US14760685

    申请日:2014-07-23

    Abstract: The present invention relates to a method for detecting time-resolved fluorescence based on a principle of phase balanced frequency multiplication modulation. A stimulating light source modulated by using a baseband signal acts on a to-be-measured target to trigger fluorescence, so that the fluorescence intensifies and decays periodically; then, a frequency-doubled square signal is used to control a sampling period and divide an ascending period of the fluorescence into two and a decay period of the fluorescence into two; after independent sampling is performed separately, sampling differences of the two parts are separately calculated and then added to obtain an intensity representative value of a fluorescence signal and to obtain a concentration value of the to-be-measured target. The method in the present invention can not only likewise cancel fluorescence interference of a substrate in a sample, but also can cancel ambient bias light, power-frequency interference of a spatial electromagnetic wave or other signals, and therefore improves signal intensity in fluorescence measurement on the detection sample, has an advantage that cannot be accomplished in a conventional time-resolved fluorescence method, and can be applied in fluorescence intensity detection of a target in fields such as biology, chemistry, and medicine.

    Array mode repeater detection
    49.
    发明授权

    公开(公告)号:US09766186B2

    公开(公告)日:2017-09-19

    申请号:US14674856

    申请日:2015-03-31

    Abstract: Systems and methods for detecting defects on a wafer are provided. One method includes generating test image(s) for at least a portion of an array region in die(s) on a wafer from frame image(s) generated by scanning the wafer with an inspection system. The method also includes generating a reference image for cell(s) in the array region from frame images generated by the scanning of the wafer. In addition, the method includes determining difference image(s) for at least one cell in the at least the portion of the array region in the die(s) by subtracting the reference image from portion(s) of the test image(s) corresponding to the at least one cell. The method further includes detecting defects on the wafer in the at least one cell based on the difference image(s).

Patent Agency Ranking