Abstract:
A spectroscope used for a microspectroscopic system includes: a collimating optical system that causes signal light to be substantially collimated light; spectroscopic optical systems and each of which includes at least one of each of spectral elements and in which a wavelength band for spectral separation varies depending on an incident angle of the signal light; at least one of each of optical receivers that detect the signal light spectrally separated by the spectroscopic optical systems; a mechanism that varies the incident angles of the signal light on the spectral elements; and a controller unit that determines the incident angles of the signal light on the spectral elements in accordance with the wavelength band for spectrally separating the signal light and controls the mechanism so as to attain the incident angles.
Abstract:
A biological body inspection apparatus includes a measurement module that acquires an amount of light having a wavelength under measurement contained in light incident on the measurement module and an enclosure that accommodates the measurement module and has a window that transmits light traveling toward the measurement module. An adhesive member is provided on a surface of the enclosure at least in an area thereof that surrounds the window. The adhesive member has a light blocking section that is located in an area outside the window and surrounds the window in a plan view in the direction along the optical axis of the light traveling toward the measurement module and blocks light that belongs to a measurement wavelength region within which at least the wavelength under measurement is present.
Abstract:
The invention relates to angle-limiting optical reflectors and optical dispersive devices such as optical spectrum analyzers using the same. The reflector has two reflective surfaces arranged in a two-dimensional corner reflector configuration for reflecting incident light back with a shift, and includes two prisms having a gap therebetween that is tilted to reflect unwanted light and transmit wanted light. A two-pass optical spectrum analyzer utilizes the reflector to block unwanted multi-pass modes that may otherwise exist and degrade the wavelength selectivity of the device.
Abstract:
A portable spectrometer device includes an illumination source for directing at a sample, and a tapered light pipe (TLP) for capturing light interacting with the sample at a first focal ratio and for delivering the light at a second focal ratio lower than the first focal ratio. A linearly variable filter (LVF) separates the captured light into a spectrum of constituent wavelength signals; and a detector array, including a plurality of pixels, each of the plurality of pixels disposed to receive at least a portion of a plurality of the constituent wavelength signals provides a power reading for each constituent wavelength. Preferably, the TLP is lensed at one end, and recessed in a protective boot with stepped inner walls. The gap between the TLP and LVF is minimized to further enhance resolution and robustness.
Abstract:
Various embodiments of apparatuses, systems and methods are described herein for a spectrometer comprising at least two dispersive elements configured to receive at least one input optical signal and generate two or more pluralities of spatially separated spectral components, at least a portion of the at least two dispersive elements being implemented on a first substrate; and a single detector array coupled to the at least two dispersive elements and configured to receive and measure two or more pluralities of narrowband optical signals derived from the two or more pluralities of spatially separated spectral components, respectively.
Abstract:
In one aspect, a spectrometer insert is provided. The spectrometer insert includes: an enclosed housing; a first transparent window on a first side of the enclosed housing; a second transparent window on a second side of the enclosed housing, wherein the first side and the second side are opposing sides of the enclosed housing; and a sample mounting and heating assembly positioned within an interior cavity of the enclosed housing in between, and in line of sight of, the first transparent window and the second transparent window. A method for using the spectrometer insert to locally heat a sample so as to measure temperature-dependent optical properties of the sample is also provided.
Abstract:
In a gas phase analyte testing method a laser beam is generated using a laser beam from a laser gain medium located within an external laser cavity. A gain parameter of the laser gain medium is changed so that the laser gain medium emits across a range of wavelengths in response to the change. The beam is passed through a test sample as the gain parameter is changed, the test sample being positioned inside the external laser cavity. A change in the spatial or spectral mode distribution or dynamics of the laser emission spectrum is detected. It is then determined whether the change in the spatial or spectral mode distribution or dynamics of the laser emission spectrum is caused by the test sample.
Abstract:
Methods of measuring a sample characteristic and accessories for infrared (IR) spectrometers are provided. An accessory includes an input port and an output port having an optical path therebetween, a surface plasmon resonance (SPR) structure for contacting a sample, a mirror system, and an optical element for producing collimated light. The SPR structure produces internally reflected light responsive to broadband IR light, modified by a SPR between the SPR structure and the sample. The mirror system directs the broadband IR light from the input port to the SPR structure and directs the internally reflected light from the SPR structure to the output port, producing output light indicative of a characteristic of the sample associated with the SPR. The optical element is disposed along the optical path between the input port and the output port.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, a hyperspectral/multispectral imaging device includes a lens configured to receive light backscattered by an object, a plurality of photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a plurality of beam splitters in optical communication with the lens and the photo-sensors, where each beam splitter splits the light received by the lens into a plurality of optical paths, each path configured to direct light to a corresponding photo-sensor through the bandpass filter corresponding to the respective photo-sensor.
Abstract:
A sensor apparatus for measuring characteristics of optical radiation has a substrate and a low profile spectrally selective detection system located within the substrate at one or more spatially separated locations. The spectrally selective detection system includes a generally laminar array of wavelength selectors optically coupled to a corresponding array of optical detectors. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.