Abstract:
The invention proposes a printed circuit board with multiple layers, which features at least one outer layer and at least one inner layer adjacent to the outer layer. The printed circuit board features a plurality of micro-through-holes, which are formed between a supply voltage area of at least one outer layer and a supply voltage area of at least one inner layer.
Abstract:
A printed circuit board (PCB) includes a stack of core layers disposed one over another, and electrically conductive interconnects extending vertically in the stack. Each of the core layers includes a substrate having opposite major surfaces, an electrically conductive active trace extending along at least one of the major surfaces, and an indicium. The stack also has an exposed edge where the indicia of the layers are together revealed. The indicia provide identifying and/or fiducial information about the PCB.
Abstract:
A fabricating method according to the present disclosure is a component built-in multilayer substrate fabricating method for incorporating a component (12) in a resin multilayer substrate (11) formed by laminating and pressing thermoplastic resin sheets (111a to 111d) so as to crimp them to each other. With the fabricating method according to the present disclosure, a metal pattern (13) is provided on a component mounting surface of the thermoplastic resin sheet (111a). Further, the component (12) is inserted in the area sandwiched by the metal pattern (13). Out of widths relating to the area sandwiched by the metal pattern (13), the width in the component mounting surface side is assumed to be a width W2, and the width in the component-insertion side is assumed to be a width W3, the width W2 being equal to or larger than a width W1 of the component but less than the width W3.
Abstract:
According to one embodiment, a semiconductor package includes a band stop filter, which includes: a transmission line pattern arranged on a package substrate; and a conductive stub pattern arranged along the transmission line pattern in a state of being separated from the transmission line pattern.
Abstract:
The present invention provides a multilayer circuit board that includes a plurality of resin layers, conductive wiring layers, and via-hole conductors. Each of the resin layers includes a resin sheet containing a resin and a conductive wiring layer disposed on at least one surface of the resin sheet. The via-hole conductors contain an intermetallic compound having a melting point of 300° C. or more produced by a reaction between a first metal composed of Sn or an alloy containing 70% by weight or more Sn and a second metal composed of a Cu—Ni alloy or a Cu—Mn alloy. The second metal has a higher melting point than the first metal.
Abstract:
Embodiments of the present invention provide for a transmission circuit that includes a transmission line and a conductive via. The transmission line is electrically coupled to a first conductive via and a second conductive via. The first conductive via includes a first via stub, wherein the transmission line is configured to transmit a signal that is coupled to the first conductive via, and wherein the first via stub extends beyond the transmission line. The second conductive via includes a second via stub, wherein the transmission line is configured to transmit a signal that is coupled to the second conductive via, and wherein the second via stub extends beyond the transmission line. A transmission line stub is electrically coupled to the transmission line or to at least one of the conductive vias, wherein the length of the transmission line stub is configured to suppress a preselected frequency.
Abstract:
Provided herein is a component package including a matching unit and a matching method thereof, the matching unit including: a substrate; a transmission line formed on the substrate, the transmission line being connected to a terminal of the component package; a bonding wire electrically connecting the transmission line and a central component; and a capacitor unit having a plurality of capacitors electrically connected with the transmission line by wiring connection, wherein an inductance of the matching unit is variable by adjusting a length of the bonding wire, and a capacitance of the matching unit is variable by increasing or reducing the number of capacitors electrically connected to the transmission line, of among the capacitors inside the capacitor unit, by extending or cutting off the wiring connection.
Abstract:
A display device according to an example embodiment of the present invention includes a display panel configured to display an image, the display panel including a plurality of pixels, a chip on film (COF) coupled to the display panel, the COF comprising a driver, a plurality of COF wires and a plurality of COF pads, and a flexible printed circuit board (FPCB) coupled to the COF, the FPCB including a plurality of FPCB wires and a plurality of FPCB pads, wherein the plurality of COF pads are arranged in two rows, and wherein one or more COF pads of the plurality of COF pads in a first row of the two rows are one or more dummy pads.
Abstract:
A manufacturing method of a circuit board is provided. Providing a substrate, where a first laser resistant structure is disposed on a first dielectric layer and at the periphery of a pre-removing area, a second dielectric layer covers the first laser resistant structure, a circuit layer is disposed on the second dielectric layer, a second laser resistant structure is disposed on the second dielectric layer and at the periphery of the pre-removing area, a third dielectric layer covers the circuit layer and the second laser resistant structure. There are gaps between the second laser resistant structure and the circuit layer, and the vertical projection of the gaps on the first dielectric layer overlaps the first laser resistant structure. A laser machining process is performed to etch the third dielectric layer at the periphery of the pre-removing area. The portion of the third dielectric layer within the pre-removing area is removed.
Abstract:
A high-frequency circuit board capable of easily forming a bias line whose resonance frequency is sufficiently separated from operating frequency is provided. On a high-frequency circuit board 100, by electrically connecting a bias line 11 to a high-frequency circuit 10 using blind via holes 106 and 107, it is possible to limit the route that has a possibility of producing resonance only to the bias line connecting the ends 106a and 107a of the blind via holes 106 and 107 to the bias line 11. By adjusting the route length from the end 106a to the end 107a, it is possible to prevent production of resonance in the vicinity of the operating frequency.