Abstract:
In an accelerating tube which uses a conductive insulator, there is a possibility that the dopant concentration on a surface of the conductive insulator becomes non-uniform so that the surface resistance of the conductive insulator becomes non-uniform. Accordingly, a circumferential groove is formed on the inner surface of the conductive insulator accelerating tube in plural stages, and metal is metalized along inner portions of the grooves. When the resistance of a specific portion on the surface of the accelerating tube differs from the resistance of an area around the specific portion, the potential of the metalized region on the inner surface of the accelerating tube becomes a fixed value and hence, the potential distribution on the inner surface of the accelerating tube in the vertical direction can be maintained substantially equal without regard to the circumferential direction.
Abstract:
This invention proposes, among other things, systems and methods for providing ozone generators or plasma generators that generate an electric field in an electron generation chamber that is separate from a reaction chamber. An electron beam emitter in an electron generation chamber is configured to emit a beam of electrons and is separated from the reaction chamber by an electron permeable barrier that provides a window through which the beam of electrons passes. The electrons are accelerated to the required energy in the electron generation chamber and transmitted through the barrier to the reaction chamber, where an input gas source introduces an input gas into the reaction chamber. The input gas may react with the beam of electrons inside the reaction chamber to form an output gas comprising a plasma or a concentration of ozone, and the output gas passes from the reaction chamber to a wafer processing chamber.
Abstract:
The present disclosure provides for various advantageous methods and apparatus of controlling electron emission. One of the broader forms of the present disclosure involves an electron emission element, comprising an electron emitter including an electron emission region disposed between a gate electrode and a cathode electrode. An anode is disposed above the electron emission region, and a voltage set is disposed above the anode. A first voltage applied between the gate electrode and the cathode electrode controls a quantity of electrons generated from the electron emission region. A second voltage applied to the anode extracts generated electrons. A third voltage applied to the voltage set controls a direction of electrons extracted through the anode.
Abstract:
The invention relates to an electron beam exposure apparatus for transferring a pattern onto the surface of a target, comprising: a beamlet generator for generating a plurality of electron beamlets; a modulation array for receiving said plurality of electron beamlets, comprising a plurality of modulators for modulating the intensity of an electron beamlet; a controller, connected to the modulation array for individually controlling the modulators, an adjustor, operationally connected to each modulator, for individually adjusting the control signal of each modulator; a focusing electron optical system comprising an array of electrostatic lenses wherein each lens focuses a corresponding individual beamlet, which is transmitted by said modulation array, to a cross section smaller than 300 nm, and a target holder for holding a target with its exposure surface onto which the pattern is to be transferred in the first focal plane of the focusing electron optical system.
Abstract:
The present invention provides an electron gun comprising a cathode, for generating electrons; an anode; an intermediate electrode, located between the cathode and the anode; and a controller. The controller applies an electrical potential to said intermediate electrode, analysing a resultant electrical parameter to determine the integrity of said intermediate electrode; and controls the electron gun to emit a pulse of electrons.
Abstract:
An apparatus for generating an electron beam is disclosed to reduce emittance of an electron beam. The apparatus includes: a housing including a rear portion where an electron beam is generated, a front portion having an electron beam discharge hole for discharging the electron beam to the exterior, and a side portion connecting the rear portion and the front portion, the side portion having a first hole and an opposite side portion, facing the first hole, having a second hole in order to reduce asymmetry of an electric field caused by the first hole; and a waveguide installed on the side portion to supply an electromagnetic wave to the interior of the housing through the first hole, wherein the electron beam is generated by laser incident to the interior of the housing and accelerated by the electromagnetic wave supplied to the interior of the housing.
Abstract:
The charged-particle beam system includes a non-axisymmetric diode forms a non-axisymmetric beam having an elliptic cross-section. A focusing element utilizes a magnetic field for focusing and transporting the non-axisymmetric beam, wherein the non-axisymmetric beam is approximately matched with the channel of the focusing element.
Abstract:
The charged-particle beam system includes a non-axisymmetric diode forms a non-axisymmetric beam having an elliptic cross-section. A focusing element utilizes a magnetic field for focusing and transporting the non-axisymmetric beam, wherein the non-axisymmetric beam is approximately matched with the channel of the focusing element.
Abstract:
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
Abstract:
A method for creating an electron lens includes the steps of applying a polymer layer on an emitter surface of an electron emitter and then curing the polymer layer to reduce volatile content.