Abstract:
The present invention relates to analysis devices having means (3, 5, 7) for producing a plurality of ion beams of samples substantially simultaneously; mass separating means for individually mass separating each ion beam in parallel and detecting means (131-13n) for detecting said mass separated ion beams substantially simultaneously, and to methods for using such devices.
Abstract:
A time-of-flight mass spectrometer (TOF-MS) array instrument is provided. Each TOF-MS of the array instrument includes (1) a gridless, focusing ionization extraction device allowing for the use of very high extraction energies in a maintenance-free design, (2) a fiberglass-clad flexible circuit-board reflector using rolled flexible circuit-board material, and (3) a low-noise, center-hole microchannel plate detector assembly that significantly reduces the noise (or “ringing”) inherent in the coaxial design. The miniature TOF-MS array allows for the bundling of a plurality of mass analyzers, e.g., a plurality of TOF-MSs, into a single array working in parallel fashion to greatly enhance the throughput of each TOF-MS in the array by multiplexing the data collection process. A preferred embodiment of the TOF-MS array instrument incorporates 16 TOF-MS units that are arranged in mirror-image clusters of eight units.
Abstract:
A mass spectrometer having an array of parallel and/or tandem ion traps. The ion traps are preferably formed by providing a body of conductive material with a plurality of holes forming ring electrodes and electrodes on opposite faces of said body, opposite the ends of said ring electrodes, to define with the ring electrodes a plurality of parallel ion traps.
Abstract:
A mass spectrometry apparatus, a quadrupole field mass analyser, is discld together with a novel method of investigating ions in or for mass spectrometry. The apparatus and method employ multiple-channel quadrupole mass filter devices to which the ions are fed via a relatively large entry aperture afforded preferably by a transverseley-split spherical or cylindrical capacitance analyser arranged in conjunction with a stop aperture device to remove ions having energies which are not within a predetermined energy band. The ions are accelerated into the first half of the capacitance analyser, decelerated to pass into the filter devices, and then reaccelerated to the ion detection device.
Abstract:
A method for optimizing at least one parameter setting of at least one mass spectrometry device (110) operating at unit resolution is disclosed. The method comprises the following steps:
a) determining at least one analyte detection window for detecting an analyte of interest with the mass spectrometry device (110), wherein the analyte detection window is defined by a central mass to charge ratio value of the analyte and a predefined width, wherein the central mass to charge ratio value of the analyte is set to a theoretical mass to charge ratio value of the analyte of interest having more than one decimal place and/or a mass to charge ratio value of the analyte of interest determined by a high resolution mass spectrometry measurement having more than one decimal place; b) determining at least one internal standard detection window for detecting an internal standard substance with the mass spectrometry device (110), wherein the internal standard detection window is defined by a central mass to charge ratio value of the internal standard substance and the pre-defined width, wherein the central mass to charge ratio value of the internal standard substance is set to a mass to charge ratio value of the internal standard substance calculated relative to the analyte of interest and having more than one decimal place and/or to a mass to charge ratio value of the internal standard substance determined by a high resolution mass spectrometry measurement having more than one decimal place.
Abstract:
The present disclosure relates generally to a method of multiple attribute monitoring for biological and other complex compounds using a chromatography-optical detector-mass spectrometry method. The mass spectrometry method can use a high resolution mass spectrometer. The methodology utilizes similar analytical techniques and instruments for both the characterization and the monitoring of biological and other complex compounds.
Abstract:
A hybrid mass spectrometer design and architecture, and methods of operating mass spectrometers are disclosed. According to one operating method, an analysis time is determined for each one of a plurality of ion species to be analyzed in an ordered sequence, and an injection time is calculated for at least some of the ion species based on an analysis time of a preceding ion species in the ordered list. The method enables more efficient utilization of analyzer time.
Abstract:
A method includes parallel or serial ionization of a gas mixture by activating at least two ionization devices operating using different ionization procedures, and/or by ionizing the gas mixture in a detector to which the gas mixture and ions and/or metastable particles of an ionization gas are fed. The method also includes detecting the ionized gas mixture in the detector for the mass spectrometric examination thereof. A mass spectrometer for mass spectrometric examination of gas mixtures includes an ionization unit for ionizing a gas mixture and a detector for detecting the ionized gas mixture.
Abstract:
The same sample S is analyzed using an ion-trap (IT) mass spectrometer section 11 in which ions are captured in an ion trap before mass spectrometry and a time-of-flight (TOF) mass spectrometer section 12 in which ions generated from the sample are directly subjected to mass spectrometry. A mass spectrum creator 21 creates an IT mass spectrum and a TOF mass spectrum from the measured results. A glycopeptide detector 23 detects fragment ion peaks related to neutral loss of sugars from the IT mass spectrum as well as peaks corresponding to intact molecular ions from the TOF mass spectrum, and furthermore, detects peaks common to the two spectra as glycopeptide ions. A quantitative analyzer 24 determines relative quantities of glycoforms of the glycopeptide based on the TOF mass spectrum. A structural analyzer 25 analyzes the structure of the glycopeptide using the result of an MSn analysis of the sample S.
Abstract:
A time-of-flight mass spectrometer (TOF-MS) utilizes a multi-channel ion detector to detect ions traveling in separate flight paths, spatially dispersed along a drift axis and/or a transverse axis, in a flight tube of a TOF analyzer. The ion beams may be dispersed by drift energy, deflection along the drift and/or transverse axis, ion mass, or a combination of two or more of the foregoing. The dispersion may be carried out before, at, or after an ion accelerator of the TOF analyzer. Ion packets may be accelerated into the flight tube at a multi-pulse firing rate. Tandem MS may be implemented on parallel ion beams simultaneously.