Abstract:
The present invention provides a heatsink for use with a heat-generating electrical component. The heatsink comprises a spine having opposing sides, cooling fins extending from the spine, and a dielectric layer adhered to at least one of the opposing sides. The dielectric layer has a thermal conductivity of at least about 1 W/m° C. The heatsink may further comprise a metal layer adhered to the dielectric layer. The metal layer provides a surface to which an electric component can be adhered. The heatsink can further include a heat-generating component adhered to the metal layer. In another aspect, the heat-generating component is a surface-mount electrical component adhered to the metal layer with solder.
Abstract:
An external heat sink is soldered to an internal heat sink incorporated into the bottom of a molded body of encapsulating resin for a package of an integrated power device. The power device is for surface mounting on a printed circuit board. The internal heat sink has at least a portion protruding from an outer surface of at least one face of the molded body. An external heat sink is mounted on the printed circuit board. The external heat sink has at least a surface abutting with a surface of the body, thus defining a separation gap between at least a surface of the protruding portion of the internal heat sink and an opposing surface of the external heat sink. This separation gap is filled with molten solder alloy during a normal soldering treatment of the printed circuit board.
Abstract:
A surface mount area-array integrated circuit package is disclosed. The package consists of a package substrate having conductive vias and internal and external conductive traces, a semiconductor die electrically and mechanically connected to the top surface of package substrate, an area-array of conductive surface mount terminations electrically and mechanically connected to the bottom of the package substrate, and at least one adhesive mass. The at least one adhesive mass is located on the bottom of the package substrate and replaces the conductive terminations in the area(s) where the joint strain energy density is calculated to be the greatest. When mounted on a substrate, the at least one adhesive mass adheres the package to the substrate. Increased mechanical and electrical reliability is thus achieved.
Abstract:
A printed circuit board 100 comprises a substrate 102 and a plurality of conductive traces 104-116 formed on the surface of the substrate 102. The conductive traces 104-116 include a marker trace 104 which is formed through the same process and of the same material as the other conductive traces 106-116 used for electrical signal transmission. The marker trace 104 may be so formed as to surround a desired footprint FP1 of a double-sided adhesive sheet 140 to be bonded on the printed circuit board 100. In this manner, a marker, such as the marker trace 104, may be formed without any need for additional and/or dedicated marker-forming process.
Abstract:
A process and circuit board assembly by which a single soldering operation produces a multicomponent stack capable of dissipating heat from a power IC chip (12) mounted to a substrate (10). The circuit board assembly generally includes a number of conductors (16) on the substrate (10), with the conductors (16) being spaced apart and substantially parallel to each other. A heat spreader (14) is soldered to at least some of the conductors (16), and the chip (12) is soldered to the heat spreader (14). With this structure, heat is conducted from the chip (12) through the heat spreader (14) and conductors (16) to the substrate (10). To maintain proper orientation of the components (12, 14, 16) relative to each other during a single soldering operation, the components (12, 14, 16) are equipped with complementary features.
Abstract:
A miniaturized high frequency switching device is capable of giving an optimum over-all impedance over the length of a signal path while compensating for inevitable impedance variation seen in a particular segment of the signal path. The switching device includes a contact block having fixed contacts and a movable contact. The fixed contacts and the movable contact are surrounded by an electromagnetic shield which is supported on a conductor base to be grounded therethrough for isolating the current path from a surrounding electromagnetic field. The fixed contacts are formed respectively on one ends of terminal pins provided for electrical connection to an external load circuit operating on high frequency signals. The terminal pin extends through an insulation ring fitted in the conductor base so as to be electrically insulated therefrom and form the signal path flowing a high frequency current. An impedance compensating structure is provided in the contact block for differentiating a first impedance at a first segment of a limited length along the terminal pin from a second impedance inherent to a second segment immediately adjacent the first segment so as to give a target over-all impedance, which is between the first and second impedance, over the full length of the terminal pin.
Abstract:
A process is provided for simultaneously attaching surface-mount (SM) integrated circuit (IC) devices (12) and chip-on-board (COB) IC devices (22) to a circuit board (10) using a combined solder reflow and adhesive cure thermal cycle. The process generally entails placing SM and COB devices (12, 22) on the circuit board (10), such that a suitable solder composition (14) and adhesive (24) are present between the circuit board (10) and the SM and COB devices (12, 22), respectively. The circuit board (10) and devices (12, 22) are then heated so as to simultaneously cure the adhesive (24) and reflow the solder composition (14). A preferred heating step entails at least one thermal cycle that attains a peak temperature well above the cure temperature of the adhesive (24), as well as above the melting or liquidus temperature of the solder composition (14). Accordingly, the thermal cycle is employed to cure the adhesive (24) well outside its conventional cure limits. Thereafter, the circuit board (10) and the devices (12, 22) are cooled to solidify the molten solder (14). The COB device (22) can then be wire bonded to the circuit board (10) and encapsulated in accordance with known practices.
Abstract:
A structure for mounting a high-frequency device on an insulating board having a circuit on a top surface and transmitting signals to the high-frequency device. The high-frequency device is sealed within a cavity on a top surface of a dielectric board. The dielectric board has a first signal transmission line on its top surface and a second signal transmission line on its bottom surface, the first and second signal transmission lines overlapping each other over a portion where the signal is transmitted through coupling of the first and second signal transmission lines. A recess is formed at the top surface of the insulating board below the overlapping portion of the first and second signal transmission lines to suppress transmission loss of the high-frequency signal between the first and second signal transmission lines. The recess may be filled with air or a material having a dielectric constant low than that of the insulating board.
Abstract:
There is disclosed herein an electronic component 10 having an integral heat spreader 16 specially designed to assist in laser soldering of the heat spreader to a solder pad 22 on a substrate 20. The component 10 has a top surface 30, a bottom surface 32 generally parallel to the top surface, and at least one perimeter outer surface 34 generally orthogonal to and between the top and bottom surfaces. The component 10 comprises: a circuit portion 12; at least one termination 14 connected to the circuit portion 12 and extending outward therefrom; a heat spreader 16 portion situated generally beneath and in thermal contact with the circuit portion 12; and a body portion 18 enclosing at least a top surface of the circuit portion 12 and a part of each termination 14 proximate the circuit portion 12. The heat spreader 16 defines at least part of the bottom surface 32 of the electronic component 10 and at least part of the at least one perimeter outer surface 34 of the electronic component 10.
Abstract:
A semiconductor device includes a wiring board having a main surface and a plurality of pad electrodes formed on the main surface, a rectangular semiconductor element having a main surface facing the main surface of the wiring board and mounted on the main surface of the wiring board, a solder resist formed to surround the semiconductor element with a preset distance therefrom on the main surface of the wiring board, a plurality of terminal electrodes formed on the end portion of the main surface of the semiconductor element, and a plurality of solder bumps for electrically connecting the plurality of pad electrodes to the plurality of terminal electrodes with a gap provided between the main surface of the wiring board and the main surface of the semiconductor element, wherein each of the plurality of pad electrodes includes at least a portion which extends from substantially under a corresponding one of the plurality of terminal electrodes of the semiconductor element to the solder resist lying outside the semiconductor element and each of the plurality of solder bumps includes a portion extending over part of a corresponding one of the plurality of pads which lies outside the semiconductor element.