Abstract:
The electronic device module and method thereof includes a board, an electronic device, a sealing part, and a connection conductor. The board includes external connection electrodes. The electronic device is mounted on the board. The sealing part is configured to seal the electronic device. The connection conductor is configured to penetrate through the sealing part and including one end bonded to the external connection electrodes of the board. One of the external connection electrodes includes a reinforcing via disposed in the board.
Abstract:
A connector for a multilayered board to connect a flat cable to a middle layer of a multilayered board while minimizing the impact due to variations in the dimensional precision and strength of multilayered boards and/or preventing deformation of the multilayered board and improving contact stability. The connector includes a board-side connecting portion and a cable-side connecting portion. The board-side connecting portion includes a column-shaped terminal, and the cable-side connecting portion includes flat terminals. The column-shaped terminal protrudes from the middle layer of the multilayered board in the thickness direction. The flat terminals include resilient contact portions, contacting a side surface portion of the column-shaped terminal from the width direction of the insertion slot in response to insertion of the cable-side connecting portion into the insertion slot.
Abstract:
A multi-piece-array formed by laminating a plurality of ceramic layers includes: a product region where a plurality of wiring board portions having a rectangular shape in plan view and including cavities are arranged in matrix; a redundant portion that is positioned along a periphery of the product region; and dividing grooves that are formed on a front surface and/or a back surface along a boundary between the wiring board portions and a boundary between the wiring board portion and the redundant portion. A deepest portion of the dividing groove has an arc shape and the dividing groove includes a middle portion, and a width of the deepest portion is greater than a width of the groove inlet and a width of the middle portion is equal to or less than the width of the groove inlet.
Abstract:
A Capacitive Micromachined Ultrasonic Transducer (CMUT) device includes at least one CMUT cell including a first substrate of a single crystal material having a top side including a patterned dielectric layer thereon including a thick and a thin dielectric region, and a through-substrate via (TSV) extending a full thickness of the first substrate. The TSV is formed of the single crystal material, is electrically isolated by isolation regions in the single crystal material, and is positioned under a top side contact area of the first substrate. A membrane layer is bonded to the thick dielectric region and over the thin dielectric region to provide a movable membrane over a micro-electro-mechanical system (MEMS) cavity. A metal layer is over the top side substrate contact area and over the movable membrane including coupling of the top side substrate contact area to the movable membrane.
Abstract:
A wiring board includes a board including a core, a conductive layer on the core, and a laminated structure over the core and conductive layer, and a stacked structure formed in the board and including a through-hole conductor through the core and a via conductor in the laminated structure. The through-hole conductor has though-hole portion through the core and land portion on the core, the laminated structure includes an insulation layer in which the via conductor is formed, the via conductor is stacked on the land portion such that the stacked structure including the through-hole and via conductors is formed through the core and the insulation layer, and the stacked structure is formed such that the through-hole portion has end connected to the land portion and the end has width set greater than width of bottom of the via conductor and smaller than width of top of the via conductor.
Abstract:
A method of forming a circuit board which includes generating laser light with a carbon dioxide laser and making a hole through an insulating substrate by irradiating the insulating substrate with the laser light. The hole includes a top opening in a top surface of the insulating substrate, a bottom opening in a bottom surface of the insulating substrate, and an inner wall extending from the top opening to the bottom opening along a thickness direction of the insulating substrate, the inner wall including a bulge which extends in a direction generally orthogonal to the thickness direction. A via hole is formed in the insulating substrate by providing metal in the hole such that the metal extends from the top opening to the bottom opening along the inner wall, and completely closes each of the top and bottom openings.
Abstract:
A multilayer printed wiring board including insulating layers and conductor layers being stacked alternately on each other. The conductor layers are electrically connected to each other through viaholes formed in the insulating layers. Each of the viaholes is formed to bulge in a direction generally orthogonal to the direction of thickness of the insulating layer. The multilayer printed wiring board is to have electronic components such as a capacitor, IC and the like mounted on the surface layer thereof.
Abstract:
A printed wiring board has an insulation layer having upper and lower surfaces, an upper-surface circuit formed on the upper surface of the insulation layer, a resin insulation layer formed on the upper surface of the insulation layer and the upper-surface circuit and having a via-conductor opening through the resin insulation layer, a conductive circuit formed on the resin insulation layer, and a via conductor formed in the opening. The resin insulation layer has first and second surfaces. The second surface of the resin insulation layer faces the upper surface of the insulation layer. The conductive circuit is formed on the first surface of the resin insulation layer. The via conductor is connecting the conductive circuit and the upper-surface circuit. The opening has an inner wall which has a diameter decreasing from the second surface of the resin insulation layer toward the first surface of the resin insulation layer.
Abstract:
A circuit board (2) includes an insulation layer (7) where a via conductor (10) is embedded. The via conductor (10) includes: a first conductor portion (10a) having an lower portion narrower than an upper portion; and a second conductor portion (10b) which is formed immediately below the first conductor portion (10a), connected to the first conductor portion (10a), and has a maximum width greater than the upper end width of the first conductor portion (10a). The insulation layer (7) has a plurality of indentations (T1a, T1b) on the surface in contact with the via conductor (10). Convex portions (T2a, T2b) of the via conductor are arranged in the indentations (T1a, T1b).
Abstract:
An opening is formed in resin 20 by a laser beam so that a via hole is formed. At this time, copper foil 22, the thickness of which is reduced (to 3 μm) by performing etching to lower the thermal conductivity is used as a conformal mask. Therefore, an opening 20a can be formed in the resin 20 if the number of irradiation of pulse-shape laser beam is reduced. Therefore, occurrence of undercut of the resin 20 which forms an interlayer insulating resin layer can be prevented. Thus, the reliability of the connection of the via holes can be improved.